KMP

for Mobile Native Developers

A Hands-on Guide to

Kotlin Multiplatform
for Android and iOS



Overview

This book is a comprehensive guide to Kotlin Multiplatform
(KMP) aimed at native mobile developers. It begins with an
introduction to KMP, explaining how this JetBrains technology
enables code sharing across different platforms such as Android,
10S, web, and desktop.

The book covers several fundamental topics, including:
« Basic Kotlin Multiplatform project structure
« Modularization and architectural best practices
« Integration with compatible Jetpack libraries
. Database implementation and local storage
« Testing strategies in multiplatform projects

It includes practical examples with code repositories and detailed
references to official documentation. It is a valuable resource for
both developers starting with KMP and those looking to deepen
their knowledge in multiplatform development.



Who I am

I am a software engineer with experience in mobile and backend
development, focused on designing efficient and sustainable
solutions, always paying attention to details to achieve clean and
functional code.

I have participated in the development of meticulously crafted
mobile applications, with an emphasis on delivering solid user
experiences. Additionally, I enjoy sharing learnings about
Android and Kotlin Multiplatform, creating content that
facilitates learning and promotes knowledge exchange within the
community.

I am driven by continuous learning and the exploration of new
technologies, transforming complex challenges into practical and
effective solutions. I believe in collaborative work as the
foundation for building robust systems and applications that

generate positive impact.




Content
. Chapter 1: Introduction to Kotlin Multiplatform. (Pag. 1)
o What is Kotlin Multiplatform?
o Code Sharing Across Platforms
o Strategies for Sharing Our Code
o How to Really Benefit from Code Sharing
. Chapter 2: Understanding the Basic Project Structure. (Pag.
16)
» Basic Concepts of Kotlin Multiplatform Project
Structure
o Advanced Concepts of Multiplatform Project Structure
o Sharing Code Across Platforms
. Chapter 3: Dependency Injection. (Pag. 32)
» Implementing Dependency Injection in Kotlin
Multiplatform
o Kodein
- Koin
o Kotlin-Inject
o Manual Dependency Injection in Kotlin Multiplatform
o Creating our own dependency injection framework
. Chapter 4: Modularization. (Pag. 47)
o Benefits of Modularization in Kotlin Multiplatform
o Strategies for Modularizing a Kotlin Multiplatform
Project
o Modularization in Practice
o Multiple Shared Modules
o Why do you need an Umbrella framework?
o Exposing Multiple KMP Frameworks in Detail
o Implementing the Umbrella Module



« Chapter 5: Testing (Pag. 71)
o Benefits of Testing in Kotlin Multiplatform
o Tools for Testing in Kotlin Multiplatform
o How to Configure and Run our Tests
o How to Avoid Slow and Coupled Tests
o First Unit Test
o Integration Tests
o Coverage Metrics
o Best Practices for Testing in Kotlin Multiplatform
o Rules for Using Tests in Multiplatform Projects
« Chapter 6: Using Native Libraries in Kotlin Multiplatform
(Pag. 111)
o Using Android Dependencies in KMP
o How to Use 10S Dependencies in KMP
o Expect/Actual
o Can we use it from a Kotlin Multiplatform module?
« Chapter 7: Libraries (Pag. 130)
o Networking
o Storage
o Database
o Multiplatform Jetpack Libraries
« Chapter 8: Essential Tools and Plugins for Kotlin
Multiplatform Development (Pag. 145)
« References
« Book Example Repositories



Chapter 1: Introduction to
Kotlin Multiplatform




Chapter 1: Introduction to Kotlin
Multiplatform

What is Kotlin Multiplatform?

Kotlin Multiplatform is a technology that simplifies cross-
platform development by allowing code sharing between
different platforms, reducing development and maintenance time
while maintaining the advantages of native programming.
Developed by JetBrains, this technology enables developers to
write code in Kotlin and share it across Android, 10S, web, and
desktop. Developers can share business logic, data models, and
other components across platforms, minimizing code duplication
and facilitating maintenance. While not all elements can be
shared due to inherent platform differences, Kotlin
Multiplatform provides tools and libraries to optimize the
amount of shared code. This code-sharing capability not only
reduces development and maintenance time but also preserves

the flexibility and advantages of native programming.

Py

el
- |ﬁ| Android = . i0s I‘!!'I Web - Deskiop
Cross-platform part in Kotlin

-
arver

Chapter | - Introduction to Kotlin Multiplatform 2



Code Sharing Across Platforms
Kotlin Multiplatform enables maintaining a single codebase
for application logic across different platforms. Additionally,
it leverages the advantages of native programming, including
high performance and full access to native SDKs. Kotlin
offers two main mechanisms for sharing code:

« Share common code across all project platforms.

« Share code selectively between specific platforms to

« maximize reuse on similar platforms.

Common

s vm desktop

iosArmE4 iosX64 macosX6d mingwx64 linuxX64

Strategies for Sharing Our Code

Share a Piece of Logic We can start by sharing an isolated and
critical part of the application, reusing existing Kotlin code to
keep applications in sync. This strategy aims to share the smallest
and most significant logical unit of our application. What is a
'logical unit'? It's a portion of our application that solves a specific
problem—such as validations or use cases—and is platform-
independent. It's essential to promote or aspire to a good base

design from the beginning.

Chapter 1 - Introduction to Kotlin Multiplatform 3



Ul

Logic

Share Logic and Keep Native UI

When starting a new project, consider using Kotlin Multiplatform
to implement data handling and business logic just once. Keep the
user interface native to meet the most demanding requirements.
While ideal for new projects, we can also leverage existing
Android code in Kotlin, reusing already developed
implementations.

The strategy is to maintain user interfaces in native frameworks,
as they are crucial for user experience, while sharing the
application's logic and infrastructure.

Ul

Chapter 1 - Introduction to Kotlin Multiplatform 4



Share up to 100% of the code Share up to 100% of your code
with Compose Multiplatform (https:/bit.ly/3QuVI1qL), a
modern declarative framework for creating user interfaces across
multiple platforms. With Compose Multiplatform, you can
develop shared user interfaces for all platforms. While this
technology is still evolving, it represents a promising option for
new mobile application projects. In its current state, Compose
Multiplatform implements Material Design principles, which
may have some limitations compared to 10OS's Design System.
However, the JetBrains team is developing Cupertino support
(Apple's Design System) for future versions.

Chapter 1 - Introduction to Kotlin Multiplatform 5


https://bit.ly/3QuV1qL
https://bit.ly/3QuV1qL

How to Really Benefit from Code Sharing

So far, we've explored the theoretical promises of Kotlin
Multiplatform, but now let's examine its practical benefits and
the libraries we can use when starting or migrating our
development.

What Parts of Your Code Could You Share Across
Platforms?

In 2021, JetBrains conducted a survey asking: "What parts of
your code were you able to share across platforms?". While there
isn't precise data about KMP adoption at that time, the survey
results appear consistent when examining software architecture

and design principles.

What parts of your code were you able
to share between platforms?

D I ————
shte e |
Intermal utilities: analytics, logging, otc. |
AbGOFIRMS SN COMPUIStions
State Managennent

PresentersControllers iewhiodels

What parts of your code were you able to share across platforms?

This is why it's important to establish a good design, as we
form a common team language when implementing solutions,
regardless of the platform.

Chapter 1 - Introduction to Kotlin Multiplatform 6



Defining an Architecture When talking about architecture, we
naturally think of Clean Architecture. This methodology consists
of architectural patterns that separate frameworks and external
elements from our domain and business logic. To implement it,

we need to understand three fundamental concepts:

Domain
Fundamental concepts of our context (User, Product, Cart, etc.)

and business rules defined exclusively by us (domain services).

Application
The layer where our application use cases reside (register user,
publish product, add product to cart, etc.).

Infrastructure

Code that varies according to external decisions. This layer
contains the implementations of interfaces defined at the domain
level. We use the Dependency Inversion Principle (DIP ) from
SOLID to decouple from external dependencies.

This is where frameworks and external components are
integrated, such as Repositories, HTTP Clients, and Caches.

Chapter 1 - Introduction to Kotlin Multiplatform 7



With KMP - sharing logic & data

A
r 7 3
Presentation Presentation

(Presenters, View Models, (Prasenters, View Modals,

| Commoles) | Controllers)

Business / Domain

(Entities, Use Cases, Interactors)

Data / Core ; Data / Core - Data / Core
(Repositories, HTTP Clients, | (Repositories, HTTP Chents, (Repositories, HTTP Clients,
Cache) Cache) X Cache)

Components in an application design

Since our domain and application layers exclusively encapsulate
business logic, they constitute the main code to be shared across
platforms. Without this code-sharing capability, we would have
to duplicate specifications in both Kotlin and Swift for each

respective platform.

Infrastructure

In this layer, we can safely implement native solutions. Following
the established definitions, we use the Dependency Inversion
Principle (D.I.P.) from SOLID to decouple our external
dependencies. To achieve this, we define contracts using Kotlin

Multiplatform's (KMP) expect-actual pattern.

Chapter 1 - Introduction to Kotlin Multiplatform 8



Kotlin Multiptatform module

androidMain commaon iosMain
Kotlin/JVM commaon Kotlin Kotlin/Mative
-
expect fun randomUUID: String()
import java.uril.s import platform.Fowndation. NSUUID
actual fun randomUUTD() = actual fun randemUUID(): String =

UUID. randomUUIDC) . toString() RSUUID() .uuIDString()

Networking Example Let's look at an example of how to use
native Android and iOS clients to make network requests. To
begin, we'll define our repository and a remote data source. For
the data source, we'll create an interface that will have two
implementations: one for Android and another for 108, as shown
in the following image.

( GameRepository W

<interface>>
GameRemoteDataSource

.

E’mdroidsameﬁemot eDatnSourc%

!

!

[ Retrofit

( IUSEamaRemoteDatQSQurcej

] URL5ession j

Chapter 1 - Introduction to Kotlin Multiplatform




For Android, we'll use Retrofit, and for 10S, we'll use
URLSession. Let's see how to implement this in code. First, we'll
define an expect function that will provide a platform- specific
implementation of the data sources.

expect fun provideGameDataSource(): GameRemoteDataSources

From here, we'll create our repository and implement the
corresponding data sources

class GameRepository(
private val remoteDataSources:
GameRemoteDataSources = provideGameDataSource(),

) A

suspend fun fetch(): Result<GameResponse> {
return remoteDataSources.getGames()

i

Chapter 1 - Introduction to Kotlin Multiplatform 10



Android Implementation

actual fun provideGameDataSource():
GameRemoteDataSources {
return AndroidGameRemoteDataSources()

by

class AndroidGameRemoteDataSources
GameRemoteDataSources {

private val client = RetrofitClient(baseUrl)
private val services =
client.create<GameServices>()

override suspend fun getGames():
Result<GameResponse> {
return runCatching {
val games = services.getGames()
val jsonElement =
Json.parseToJsonElement(games)

Json.decodeFromJsonElement<GameResponse>(jsonElement)
s
s

companion object {

private const val baseUrl = "https://
www . freetogame.com/api/"

F
}

Chapter 1 - Introduction to Kotlin Multiplatform

11



iOS Implementation

actual fun provideGameDataSource():
GameRemoteDataSources {
return I0SGameRemoteDataSources()

hy

class I0SGameRemoteDataSources : GameRemoteDataSources

{
private val client = URLSessionClient()

override suspend fun getGames():
Result<GameResponse> {
return runCatching {
val jsonString = client.fetch(baseUri1)
Json.decodeFromString<GameResponse>(jsonString)

}.
hy

companion object {
private const val baseUrl = "https://
www . freetogame.com/api/games"

}
}

Once these configurations are implemented, our KMP project

will have the following structure

Chapter 1 - Introduction to Kotlin Multiplatform 12



Project -

[= shared

[2 androidMain [main]
katlin

(3 com.santimattius. kmp.example

cii. androdd.kt
emateDataSources.kt
: GameServices
: RatrafitChent
. Platform.android. kt
< [7 commonMaln
kotlin
[ com.santimattius. kmp.example
[ data
datasource.commaon.kt
: GameRemate|
: GamaRa
GameResponse.kt
. Platfiorm. kt
: Greating
= 7 iosMain
kotlin
+ [ com.santimattius. kmp.example

« [ data
datasource.ios.kt
GameRemoteDataSources.kt

NSExtensions.kt
sionClient

Spoiler Alert: In the next chapter, we'll explore the structure of a

Kotlin Multiplatform project.
As we mentioned that "we'll rely on SOLID's DIP to decouple
from external dependencies", we can also use native code, that is,
code implemented directly in the platform where we're using our
multiplatform code. Let's look at an example of this in i1OS with
Swift. Since GameRemoteDataSource is an interface in Kotlin, it

translates to a protocol in Swift.

Chapter 1 - Introduction to Kotlin Multiplatform 13



class SwiftGameRemoteDataSources: GameRemoteDataSources {
func getGames() async throws -> Any? {

guard let url = URL(string: "https://
www . freetogame.com/api/games") else {
throw GameServiceError.invalidURL

}
let (data, _) = try await
URLSession.shared.data(from: url)
let result = try
JSONDecoder() .decode(GameResponse.self, from: data)
return result.map{ item in item.asDomainModel() }

F
I

Note that type compatibility is lost here, as we can see in the
getGames function signature which returns Any? We can

implement this as follows

import Shared

@0bservable
class GameViewModel{

let repository = GameRepository(remoteDataSources:
SwiftGameRemoteDataSources())

var data:String = ""

func load(){
self.repository.fetch(completionHandler:{response, _
in
self.data = "\(String(describing: response))"

B

}.

You can find the complete example in the following repository:
GitHub - KMP for Mobile Native Developers (https://
bit.ly/3X gfS4P)

Chapter 1 - Introduction to Kotlin Multiplatform


https://bit.ly/3XgfS4P
https://bit.ly/3XgfS4P
https://bit.ly/3XgfS4P
https://bit.ly/3XgfS4P

GitHub - santimattius/kmp-for-mobile-

native-developers at attius/kmp-for-
feature_01_expect_actual KMP for -native-developers ﬁ
Mobile Native Developers. Contribute b

to santimattius/kmp-for-mobile-

native- developers development by o fe ¥1 0
creating an account on GitHub. —_—

While sharing business logic 1is valuable in Kotlin
Multiplatform, reusing native code at the infrastructure level
can be complex to maintain due to platform differences. For
example, when handling preferences, Android requires a
Context while 10S wuses UserDefaults, creating platform-
specific dependencies. To address this, we'll explore
multiplatform libraries that offer common abstractions for
storage, networking, and other essential functionalities,
enabling more consistent implementation and greater code
reuse. In the next chapter, we'll analyze the basic structure of a
Kotlin Multiplatform project, including modules, source sets,
and targets - fundamental elements for developing efficient

multiplatform applications.

15

Chapter 1 - Introduction to Kotlin Multiplatform


https://github.com/santimattius/kmp-for-mobile-native-developers/tree/feature_01_expect_actual
https://github.com/santimattius/kmp-for-mobile-native-developers/tree/feature_01_expect_actual
https://github.com/santimattius/kmp-for-mobile-native-developers/tree/feature_01_expect_actual
https://github.com/santimattius/kmp-for-mobile-native-developers/tree/feature_01_expect_actual
https://github.com/santimattius/kmp-for-mobile-native-developers/tree/feature_01_expect_actual

Chapter 2: Understanding the
Basic Project Structure

VM iosSimulatorArmiG4

iosArmE4 Other iOS tagrets
‘41r'||r"':| Taly!

iosArmiGa losSimulator ArmG4

Other iOS tagrats

iosArmG4

Mative axecutables
for iPhone devices

16



Chapter 2: Understanding the Basic
Project Structure

In this chapter, we'll look at the structure of a multiplatform
project and the fundamental concepts introduced when sharing
code in KMP. Each Kotlin Multiplatform project includes three
modules:

. shared is a Kotlin module that contains the common logic
for Android and 10OS applications: the code that is shared
between platforms. It uses Gradle (https://bit.ly/419Qe¢jC) as
a build system to automate the build process.

« composeApp is a Kotlin module that compiles into an
Android application. It uses Gradle as a build system. The
composeApp module depends on and uses the shared
module as a regular Android library.

« iosApp is an Xcode project that compiles into an i0S
application. It depends on and uses the shared module as an
10S framework. The shared module can be used as a regular
framework or as a CocoaPods (https://bit.ly/41eANqa)
dependency. By default, the Kotlin Multiplatform wizard

creates projects that use the regular framework dependency.

Chapter 2 - Understanding the Basic Project Structure 17


https://bit.ly/419QejC
https://bit.ly/419QejC
https://bit.ly/41eANqa
https://bit.ly/41eANqa

Root project Shaned maodule

Kotlin Gradle Swift Xcode

Androld app

The shared module consists of three source sets: androidMain,
commonMain, and iosMain. A "source set" is a grouping of
related files in Gradle, where each set handles its own
dependencies. In Kotlin Multiplatform, these source sets can
target different platforms within the shared module. The
common set contains the Kotlin code that is shared, while the
platform-specific sets implement specialized Kotlin code for
each target. In the case of androidMain, Kotlin/JTVM is used,
and for iosMain, Kotlin/Native.

Chapter 2 - Understanding the Basic Project Structure 18



Project ~

« [7 kmp-for-mobile-native-developers
» O .fleet

> [7 composeApp
» [ gradle
> DiosApp

.gitignore
build.gradle.kts
gradle.properties
£ gradiew
= gradlew.bat

- README.md
&2 settings.gradle.kts
> [h External Libraries

» = Scratches and Consoles

When the shared module is integrated as an Android library,
the common Kotlin code is compiled to Kotlin/TVM. However,
when integrated as an 10S framework, this same code is
compiled to Kotlin/Native.

androidMain commonhain iosMain

Android library i0S framework

Chapter 2 - Understanding the Basic Project Structure 19



Let's now dive deeper into Source sets and Targets, and how they

indicate which platforms we can share our code with.
Basic Concepts of Kotlin Multiplatform Project

Structure

Targets

Targets define the specific platforms for which Kotlin will
compile the shared code, such as Android and iOS in mobile
projects. In KMP, a target is an identifier that specifies the type
of compilation. It determines the format of generated binary
files, available language constructs, and dependencies that can be

used.
kotlin {
androidTarget {
compilations.all {
kotlinOptions {

jvmTarget =
JavaVersion.VERSION_1_8.toString()
}
}
}
1ist0of(
iosX64(),
iosArmé4(),
iosSimulatorArmé4()

) .forEach { iosTarget ->
iosTarget.binaries.framework {
baseName = "Shared"
isStatic = true

+

Chapter 2 - Understanding the Basic Project Structure 20



As we can see in the code above, targets can specify
particular configurations for each platform. For example,
for Android we are indicating in kotlinOptions that the
jvmTarget should be Java 1.8. There is a default hierarchy

within the targets, where if our
definition is the following

kotlin {
androidTarget()
iosArmé4()
iosSimulatorArmé4()
}

The resulting source sets hierarchy is as follows

common
native androidTarget
androidNative apple mingw linux
ios macos tvos watchos
iosArm64 iosSimulatorArm64

Chapter 2 - Understanding the Basic Project Structure 21



The "source sets" shown in green are created and active in
the project, while those in gray from the default template are
ignored. For example, the Kotlin Gradle plugin doesn't
generate code for watchOS because the project has no targets
defined for this platform.

The basics of Kotlin Multiplatform project structure | Kotlin

With Kotlin Multiplatform, you can share code among different platforms.
This article explains the constraints of the shared code, how to distinguish
between shared and platform-specific parts of

Kotlin Docs.

( https://kotlinlang.org/docs/multiplatform-discover-project.html

Next, we'll see how to access these source sets and how to define

specific dependencies within them.

Source sets

A Kotlin source set is a collection of files that share targets,
dependencies, and compilation configurations. It is the
main mechanism for sharing code in multiplatform projects.
Each source set in a multiplatform project:

« Has a unique name within the project.

. Contains files and resources, organized in a directory that
bears the source set's name.

« Specifies the targets for which the code compiles,
determining which language features and dependencies are
available.

« Defines its own dependencies and compilation

configurations.

Chapter 2 - Understanding the Basic Project Structure 22


https://kotlinlang.org/docs/multiplatform-discover-project.html
https://kotlinlang.org/docs/multiplatform-discover-project.html
https://kotlinlang.org/docs/multiplatform-discover-project.html

Kotlin offers several predefined source sets. Among them,
commonMain stands out, as it is present in all multiplatform
projects and brings together all declared targets. In the src
directory of our shared module, we'll find the defined source sets.
For example, in a project with commonMain, iosMain, and

androidMain, the source sets are structured as follows:

~ [z shared

v [ src
> [ androidMain [main]
» [C commonMain

(- iosMain
1 build.gradle.kts

Chapter 2 - Understanding the Basic Project Structure 23



In Gradle scripts, source sets are accessed by name within the

kotlin.sourceSets {} block:
kotlin {

// Targets
androidTarget {
compilations.all {
kotlinOptions {
jvmTarget = JavaVersion.VERSION_1_8.toString()

¥
¥
¥
1istof(
iosX64(),
iosArmé64(),
iosSimulatorArmé4()

) .forEach { iosTarget ->
iosTarget.binaries.framework {
baseName = "Shared"
isStatic = true

// Sourcets
sourceSets {
commonMain.dependencies {

i

Within our source sets, we can define platform-specific code

for each supported platform.

Chapter 2 - Understanding the Basic Project Structure 24



« Dsrc
« [2 androidMain [main]
kotlin
» [E] com.santimattius.kmp.data.db
Platform.android.kt

~ [7 commonMain

katlin
[0 com.santimattius.kmp
; Greating
% Platform. kt
» [ sqidelight
- [ losMain
kotlin
* [0 com.santimattius.kmp.data,.db
< Platform.ios.kt
&% build.gradie. kts

The basics of Kotlin Multiplatform project structure | Kotlin

With Kotlin Multiplatform, you can share code among different platforms.
This article explains the constraints of the shared code, how to distinguish <

between shared and platform-specific parts of 4 Kotlin DOCS.

( https://kotlinlang.org/docs/multiplatform-discover-project.html#source-sets

Advanced Concepts of Multiplatform Project
Structure

In this section, we'll explore some advanced concepts of the
Kotlin Multiplatform project structure and how they relate to
Gradle implementation. This information will be useful if you
need to work with low-level abstractions of Gradle builds
(configurations, tasks, publications, and others) or if you're
creating a Gradle plugin for Kotlin Multiplatform builds.

Chapter 2 - Understanding the Basic Project Structure 25


https://kotlinlang.org/docs/multiplatform-discover-project.html#source-sets
https://kotlinlang.org/docs/multiplatform-discover-project.html#source-sets
https://kotlinlang.org/docs/multiplatform-discover-project.html#source-sets

DependsOn

dependsOn is a specific relationship in Kotlin that connects two
source sets. This connection can occur between common and
platform-specific source sets, such as when jymMain depends on

commonMain, or iosArm64Main depends on iosMain.

To better understand how it works, let's take two Kotlin source
sets A and B. When we write A.dependsOn(B), this means:

« A has access to B's API, including its internal declarations.

« A can implement B's expected declarations. This is
fundamental, as A can only provide actuals for B if there is a
dependsOn relationship, either direct or indirect.

« B must compile for all of A's targets, in addition to its own
targets.

B inherits all of A's regular dependencies.

This dependsOn relationship generates a tree-like hierarchical
structure between

source sets.

kotlin A{
// Targets declaration
sourceSets {

// Example of configuring the dependsOn relation
iosArmé4Main.dependsOn(commonMain)

For more information about advanced concepts of the
multiplatform project structure, you can refer to the official
Kotlin documentation.

Chapter 2 - Understanding the Basic Project Structure 26


https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html
https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html
https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html
https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html

Advanced concepts of the multiplatform project structure | Kotlin

This article explains advanced concepts of the Kotlin Multiplatform project
structure and how they map to the Gradle implementation. This information will =
be useful if you need to work with low-level abstractions KOtl n DOCS

‘ https://kotlinlang.org/docs/multiplatform-advanced-project-structure.
html#dependencies-and-dependson

Dependencies on Other Libraries or Projects

In multiplatform projects, you can configure dependencies from
both published libraries and other Gradle projects.
Dependency configuration in Kotlin Multiplatform follows a

structure similar to Gradle, where:

« The dependencies {} block is used in the build script.

« The appropriate scope for dependencies is selected, such as
implementation or api.

« The dependency is referenced through its coordinates when
published in a repository (for example,
"org.jetbrains.kotlinx:kotlinx-coroutines-android:1.8.0") or
through its path if it's a local Gradle project (like
project(":utils:concurrency")).

Dependency configuration in multiplatform projects has a
distinctive feature: each Kotlin source set has its own
dependencies {} block, allowing you to declare platform-specific
dependencies.

Chapter 2 - Understanding the Basic Project Structure 27


https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html#dependencies-and-dependson
https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html#dependencies-and-dependson
https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html#dependencies-and-dependson
https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html#dependencies-and-dependson

kotlin {

// Targets declaration
sourceSets {

androidMain.dependencies {

implementation("org.jetbrains.kotlinx:kotlinx-
coroutines-android:1.8.0"

b

Let's consider a multiplatform project that uses a multiplatform
library, such as kotlinx.coroutines :

kotlin {
androidTarget() // Android
iosArmé4() // iPhone devices

iosSimulatorArmé4() // iPhone simulator on Apple
Silicon

sourceSets {
commonMain.dependencies {
implementation("org.jetbrains.kotlinx:kotlinx-
coroutines-core:1.8.0")
}
¥

For more information about multiplatform dependencies, you
can refer to the Kotlin Multiplatform Dependencies
documentation.

Advanced concepts of the multiplatform project structure | Kotlin
This article explains advanced concepts of the Kotlin Multiplatform project
structure and how they map to the Gradle implementation. This information will

be useful if you need to work with low-level abstractions Kotlin DOCS

[ 4 https://kotlinlang.org/docs/multiplatform-advanced-project-structure.
html#dependencies-on-other-libraries-or-projects

Chapter 2 - Understanding the Basic Project Structure 28


https://kotlinlang.org/docs/multiplatform-dependencies.html
https://kotlinlang.org/docs/multiplatform-dependencies.html
https://kotlinlang.org/docs/multiplatform-dependencies.html
https://kotlinlang.org/docs/multiplatform-dependencies.html
https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html#dependencies-on-other-libraries-or-projects
https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html#dependencies-on-other-libraries-or-projects
https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html#dependencies-on-other-libraries-or-projects
https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html#dependencies-on-other-libraries-or-projects
https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html#dependencies-on-other-libraries-or-projects
https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html#dependencies-on-other-libraries-or-projects

Dependency Resolution

In the dependency resolution process for multiplatform projects,
three fundamental aspects stand out:

« Multiplatform Dependencies Propagation: Dependencies
declared in the commonMain source set automatically
propagate to other source sets with dependsOn relationships.
For example, a dependency added to commonMain extends
to iosMain, jvymMain, iosSimulatorArm64Main, and
10sX64Main. This prevents duplication and simplifies
dependency management.

« Intermediate and Final State of Dependency Resolution: The
commonMain source set acts as an intermediate state in
dependency resolution, while platform-specific source sets
represent the final state. After resolution, each multiplatform
library is structured as a collection of its individual source
sets, allowing for more precise management and ensuring
project coherence.

« Resolution of Dependencies by Compatible Targets: Kotlin
ensures that a dependency's source sets are compatible with
those of the consumer. For example, if a source set compiles
for androidTarget, i10sX64, and iosSimulatorArm64, the
dependency must offer source sets compatible with these
targets. This ensures dependencies work across all target
platforms.

Chapter 2 - Understanding the Basic Project Structure 29



In summary, dependency resolution in multiplatform projects is
based on three pillars: automatic propagation from
commonMain, management of intermediate and final states,
and compatibility between dependencies and consumers. This
system ensures efficient and coherent management in Kotlin

multiplatform projects.

Sharing Code Across Platforms

If you have business logic common to all platforms, you can
avoid code duplication by sharing it in the common source set.
Some dependencies between source sets are established
automatically, eliminating the need to manually specify
dependsOn relationships:
« Between platform-specific source sets that depend on the
common source set (for example, jvmMain, macosX64Main).

. Between main and test source sets of a specific target (such as
androidMain and androidUnitTest).

To access platform-specific APIs from shared code, use Kotlin's
expect/actual declarations mechanism, which we explored in the
previous post.

Chapter 2 - Understanding the Basic Project Structure 30



Katlin Multiplatfarm madule

androidMain commaon iosMain
Kotlin/JVM common Kotlin Kotlin/Mative
& £

expect fun randomUUID: String()

't java.util.= impart platform.Foundation,NSUUID
actual fun randomlUID() = actual fun randomUUIDC(): String =
UuID. randomUUIDC) . toStringl) NSUUID() . uuIDString()

Sharing Code Across Similar Platforms

Multiplatform projects often require creating multiple native
targets that can reuse much of the common logic and third-party
APIs. A common example is in 10S projects, where two targets
are needed: one for iI0OS ARMG64 devices and another for the x64
simulator. While these have separate specific source sets, they
rarely require different code between them, and their
dependencies are very similar. This allows sharing 10S-specific
code between both targets. Therefore, it's advantageous to have a
shared set of sources for both 10S targets, allowing Kotlin/Native
code to directly access the common APIs of both 10OS device and
simulator. To implement this, you can share code between native
targets using the hierarchical structure through two options:

« Using the default hierarchy template

« Manually configuring the hierarchical structure

Chapter 2 - Understanding the Basic Project Structure 31


https://kotlinlang.org/docs/multiplatform-hierarchy.html
https://kotlinlang.org/docs/multiplatform-hierarchy.html
https://kotlinlang.org/docs/multiplatform-hierarchy.html#default-hierarchy-template
https://kotlinlang.org/docs/multiplatform-hierarchy.html#default-hierarchy-template
https://kotlinlang.org/docs/multiplatform-hierarchy.html#manual-configuration

Chapter 3: Dependency
Injection

32



Chapter 3: Dependency Injection

In software development, dependency management is essential.
Dependency Injection (DI) is a design pattern that allows
application components to receive their dependencies instead of
creating them internally. This promotes modularization,
facilitates code reuse, and simplifies unit testing. In Kotlin
Multiplatform (KMP), DI is fundamental to ensure code

cohesion and portability across different platforms.
Benefits of Dependency Injection

« Code Reuse: By decoupling components, code can be reused
across different platforms without significant changes.

« Testability: DI simplifies unit testing by allowing
dependencies to be replaced with mock or fake objects.

o In future articles, we'll explain how to mock objects for
testing in KMP.

« Flexibility: DI facilitates the incorporation of new
functionalities and changes in dependencies without
affecting existing code, improving scalability and
maintainability.

« Clarity and Organization: DI promotes a clearer and more
organized code structure by explicitly defining dependencies
and their relationships.

Chapter 3 - Dependency Injection 33



Although JetBrains does not provide a native dependency
injection solution for the multiplatform ecosystem, they

recommend using existing community-developed solutions.

Kotlin by JetBrains & =

#Multipls lip =@ Need to perform dependency injection in your
KMP app? Are you confused about which frameworks to use?

You cannot use:
Dagger
Hilt

You can use:
4 Koin |

B Kodein gith
B kotlin-inject

Jetbrains tweet about Dependency Injection tip

Implementing Dependency Injection in
Kotlin Multiplatform

To implement Dependency Injection (DI) in Kotlin
Multiplatform, there are several libraries and approaches

available. Each offers different advantages and disadvantages:

Chapter 3 - Dependency Injection 34



« Kodein: A native Kotlin DI library that stands out for its
simple syntax and easy configuration. Its platform-
independent nature makes it ideal for KMP projects.

« Koin: A popular library that uses a declarative syntax and is
easy to configure. While it relies on reflection, this can
present limitations on some platforms like 1O0S.

« Kotlin Inject is a compile-time DI library designed
specifically for Kotlin Multiplatform, ensuring efficient,
reflection-free injection across JVM, Native, and JavaScript
platforms.

« Manual DI: An alternative that, while requiring more
implementation effort, offers total control over the process.
It involves creating and injecting dependencies externally
through constructors or methods.

Let's examine each of these options in detail.

Kodein

Kodein is a dependency injection library for Kotlin. It's designed
to simplify dependency management in Kotlin applications
across multiple platforms: Android, i0OS, Web, and Backend.
Thanks to its simple syntax and straightforward configuration, it
has become a popular choice for Kotlin Multiplatform projects.

Chapter 3 - Dependency Injection 35



Main Features of Kodein

« Concise and Declarative Syntax: Kodein uses an
intuitivesyntax that facilitates the definition and
resolution of dependencies, improving code readability
and maintainability.

« Platform Independent: Being developed purely in
Kotlin,Kodein works on any platform without worrying
about compatibility with specific frameworks or libraries.

« Kotlin Coroutines Support: Kodein integrates perfectly
with Kotlin Coroutines, facilitating dependency
management in asynchronous and reactive code.

« Modular Configuration: Offers a modular system for
configuring dependencies, simplifying the organization
and maintenance of extensive projects.

« Flexible Injection: Allows dependency injection through
both constructor and property, offering versatility in
dependency resolution.

« Annotation Support: Includes annotations to identify

components and configurations, improving code clarity.

Basic Usage of Kodein

To implement Kodein in a Kotlin Multiplatform project, the
first step is to add the dependency to the configuration file.
Then, you can define dependency modules and register
application components using the Kodein API. Finally, you'll be
able to resolve these dependencies in any section of the

application where you need them.

Let's look at a basic code example using Kodein:

Chapter 3 - Dependency Injection 36



// Define a dependency module
val appModule = DI.Module("appModule") {
bind<Database>() with singleton { Database() }
bind<UserRepository>() with singleton {
UserRepository(instance()) }
bind<MyService>() with singleton { MyService(instance()) }

i

// Configure the DI container
val di = DI {
importAll(appModule)

// Resolve dependencies in a class
class MyService(private val userRepository: UserRepository) {

/...
I

// Use resolved dependencies
val myService by di.instance<MyService>()

In this example, a dependency module is defined that provides a
database implementation and a user repository. Then, Kodein is
configured with this module and an instance of MyService that

depends on the user repository is resolved.

Getting started with Kodein-DI: Kodein Open Source Initiative Documentation
Kodein-DI is a Dependency Injection library. It allows you to bind your business unit interfaces with their

implementation and thus having each business unit being independent.

https://kosi-libs.org/kodein/7.22/getting-started.html

Chapter 3 - Dependency Injection 37


https://kosi-libs.org/kodein/7.22/getting-started.html
https://kosi-libs.org/kodein/7.22/getting-started.html
https://kosi-libs.org/kodein/7.22/getting-started.html

Koin
Koin is a lightweight Dependency Injection library for Kotlin that

stands out for its simplicity and ease of use. Compatible with
Android, backend, and 108, it prioritizes clean and readable code.

Main Features of Koin

« Non-Intrusive: Uses pure Kotlin functions, integrating
naturally without modifying existing architecture.

« Clear Syntax: Employs a simple DSL that facilitates
dependency definition and resolution.

« Optimized Performance: By not using reflection, it improves
performance and is compatible with iOS/Kotlin Native.

« Flexibility: Allows constructor and property injection,
adapting to different needs.

« Lifecycle Control: Manages scopes to control instance creation
and destruction.

« High Compatibility: Easily integrates with Kotlin frameworks
and libraries.

Basic Usage of Koin

To implement Koin in a Kotlin Multiplatform project, follow
these steps: first, add the Koin dependency to the project
configuration file. Then, define dependency modules and register
application components using the Koin API. Finally, resolve

dependencies where you need them in your application.

Chapter 3 - Dependency Injection 38



Let's look at a basic implementation example with Koin: In this
example, a dependency module is defined that provides a
database, a user repository, and a ViewModel. Then, Koin is
configured with this module and an instance of MyViewModel,
which depends on the user repository, is obtained.

// Define a dependency module

val myModule = module {
single { Database() }
single { UserRepository(get()) }
factory { MyViewModel(get()) }

// Configure Koin with the defined module
startKoin {

modules (myModule)
}

// Resolve dependencies in a class
class MyActivity : AppCompatActivity() {
private val viewModel: MyViewModel by viewModel()

/] ...

Koin: The Kotlin Dependency Injection Framework
The Kotlin Dependency Injection Framework

g https://insert-koin.io/

Chapter 3 - Dependency Injection 39


https://insert-koin.io/
https://insert-koin.io/

Kotlin Inject for Multiplatform

Kotlin Inject is a lightweight, reflection-free dependency
injection (DI) library for Kotlin, designed specifically for Kotlin
Multiplatform (KMP). It leverages Kotlin compiler plugins to
generate dependency graphs at compile time.

Key Features

« Kotlin Inject provides several advantages over traditional DI
frameworks:

« Multiplatform Support: Works seamlessly with JVM, Native,
and JS, making it ideal for KMP projects.

« Reflection-Free: Unlike Dagger, it avoids runtime reflection,
making it performant in Kotlin/Native environments.

« Compile-Time Dependency Injection: Generates dependency
graphs at build time, eliminating runtime overhead.

* Constructor Injection — Encourages immutability and clear
dependency management.

. Lightweight & Simple — Requires minimal setup, reducing
boilerplate code.

Chapter 3 - Dependency Injection 40



Example: Dependency Injection in KMP Define Dependencies The

first step in setting up dependency injection is to annotate
classes with @Inject, signaling that they can be automatically
provided by the DI system.

import me.tatarka.inject.annotations.Inject

// Service - Basic dependency
class UserService @Inject constructor() {

fun getUser() = "Santiago Mattiauda"
}

// Repository - Inject dependency
class UserRepository @Inject constructor(private val
userService: UserService) {

fun fetchUser(): String = userService.getUser()

F

// ViewModel - Inject repository
class UserViewModel @Inject constructor(private val
userRepository: UserRepository) {

fun getUserName(): String = userRepository.fetchUser()
}
By marking each class with @Inject, Kotlin Inject can

automatically generate the necessary dependency graph.

Creating a Dependency Container
In Kotlin Inject, a Component is an abstraction that defines the
dependencies available in an application.

Chapter 3 - Dependency Injection 41



import me.tatarka.inject.annotations.Component

// Define a dependency container using @Component
@Component
abstract class AppComponent {

abstract val userViewModel: UserViewModel

companion object {
fun create(): AppComponent =
AppComponent::class.create()

F
F

This AppComponent class serves as the centralized factory for
managing instances. By calling AppComponent.create(), we
obtain an instance of the component with all dependencies
properly injected.

Using the Dependency Injection System
With the component set up, we can now retrieve an instance of
UserViewModel and use it:

fun main() {
val appComponent = AppComponent.create()
val viewModel = appComponent.userViewModel

println(viewModel.getUserName()) // Output:
Santiago Mattiauda

}

This approach ensures that all dependencies are created and

managed automatically without manual instantiation.

Chapter 3 - Dependency Injection 42



Manual Dependency Injection in Kotlin
Multiplatform

Manual Dependency Injection (DI) is a simple alternative for
managing dependencies in KMP projects without using external
libraries. This approach involves creating and injecting

dependencies directly into the classes that need them.

Basic Principles
« Constructor Injection: Dependencies are passed through
constructors, keeping code explicit and clear.
« OOP Approach: Aligns with object-oriented programming,

using clear interfaces between components.

Implementation
« Identify: Determine which dependencies each class needs.
« Create: Generate instances at the top level using patterns
like Singleton.
+ Inject: Provide dependencies through constructors.
« Manage: Handle the lifecycle of dependencies.

Chapter 3 - Dependency Injection 43



// Service: Base dependency
class UserService {

fun getUser(): String = "Santiago Mattiauda"
}

// Repository: Receives dependency via constructor
class UserRepository(private val userService: UserService) {
fun fetchUser(): String = userService.getUser()

F

// ViewModel: Also receives dependency via constructor
class UserViewModel(private val userRepository: UserRepository) {

fun getUserName(): String = userRepository.fetchUser()

}

// Dependency Container (Manages and creates instances)
object AppContainer {

val userService: UserService by lazy { UserService() }

val userRepository: UserRepository by lazy {
UserRepository(userService) }

val userViewModel: UserViewModel by lazy {
UserViewModel(userRepository) }

j

// Application usage
fun main() {
val viewModel = AppContainer.userViewModel
println(viewModel.getUserName()) // Output: Santiago
Mattiauda
h

Advantages and Challenges
« Advantages: Simplicity, total control, and transparency in
dependency flow.
« Challenges: Higher coupling, manual maintenance, and
possible code repetition.

Chapter 3 - Dependency Injection 44



Key Considerations

« Design: Create clear interfaces following SOLID principles.

» Lifecycle: Properly manage instance creation and
destruction.

. Testing: Facilitate unit testing through mocks.

« Scalability: Maintain a modular and structured approach.

. Documentation: Maintain clear documentation and effective
team communication.

Off Topic: Creating our own dependency injection
framework

As the title suggests, while this is a secondary topic, it
represents a viable alternative when we want to avoid external
dependencies for dependency injection and reduce code
repetition inherent to manual injection. While we won't delve
into this topic, I'd like to conclude this article by
recommending the following resource about it.

=y

DIY’ your own Dependency Injection library!

Demystifying the internals of DI libraries

& https://blog.p-y.wtf/diy-your-own-dependency-injection-
ylibrar

Chapter 3 - Dependency Injection 45


https://blog.p-y.wtf/diy-your-own-dependency-injection-library
https://blog.p-y.wtf/diy-your-own-dependency-injection-library
https://blog.p-y.wtf/diy-your-own-dependency-injection-library

Summary of the presented alternatives

Koin is a lightweight library for implementing Dependency
Injection in Kotlin applications. It stands out for its ease of use
and efficiency, being highly valued by the developer community.
Its cross-platform compatibility and frequent updates make it a

reliable option for Kotlin Multiplatform projects.

Kodein is a robust library for managing dependencies in Kotlin
Multiplatform projects. It offers an intuitive syntax, cross-
platform support, and advanced features such as Kotlin
Coroutines integration. Its efficiency, flexibility, and support
from an active community position it as a solid solution for

dependency injection in Kotlin.

Kotlin Inject is an excellent choice for Kotlin Multiplatform
projects requiring efficient and lightweight Dependency Injection.
By leveraging compile-time DI, it avoids the pitfalls of reflection-
based approaches while providing an intuitive and scalable

solution.

Manual Dependency Injection allows total control over
dependency management in Kotlin Multiplatform projects
without relying on external libraries. While it requires more
implementation and maintenance effort, it is ideal for small
projects or teams that prefer a direct approach. However, it is
crucial to carefully evaluate project requirements and weigh the
advantages and challenges before opting for manual DI in a
KMP project.

Chapter 3 - Dependency Injection 46



Chapter 4: Modularization

Feature module 1 Feature module 2 Feature module N

J!

Is generated from

Android app Umbrella framework

r

i0S app

47



Chapter 4: Modularization

Modularization has gained greater importance in the face of
growing complexity in mobile applications and platform
diversity. This strategy is fundamental for improving code
maintainability, scalability, and reusability. In this scenario,
Kotlin Multiplatform emerges as an ideal solution for developing
mobile applications across different platforms, such as Android
and 10S. Let's see how to modularize a Kotlin Multiplatform
project.

Benefits of Modularization in Kotlin
Multiplatform

KMP allows sharing business logic, data models, and
components across various mobile applications, resulting in more
efficient development and greater consistency between
application versions. Modularization in a KMP project offers
several significant benefits:

Clhapter 4 - Modularization 48



« Code Reusability: Independent modules facilitate the reuse of
components and functionalities across different parts of the
application and between platforms.

« Maintainability: Well-defined modules simplify code
understanding and maintenance. Being able to develop, test,
and update each module independently speeds up
development and reduces errors.

« Scalability: Modularization facilitates project growth,
allowing modules to be added or modified without affecting
existing code.

« Decoupling: Separation into independent modules reduces
coupling between components, making the code more flexible

and easier to extend.

So far, we've explored the theory behind modularization. But
what strategies can we implement to make the most of cross-
platform development?

Strategies for Modularizing a Kotlin
Multiplatform Project

There are various strategies for modularizing a KMP project.

The most common ones are:

Chapter 4 - Modularization 49



« Layer-based Division: Organizes code into modules
representing different architecture layers, such as
presentation, business logic, and data access.

« Feature-based Division: Groups code related to a specific
functionality into a single module, facilitating its reuse and
maintenance.

« Platform-based Division: Separates platform-specific code
into different modules, keeping shared code in a central
module.

« Domain-based Division: Organizes code into modules
representing different application domains, such as user,
authentication, and purchases.

This approach is valid for both monorepos and separate
repositories, as the fundamental aspects are the configurations
of projects using KMP.

Modularization in Practice
When creating a KMP project, whether it's an App or Library
type, a Shared module is automatically generated that will

function as a shared module between both platforms: Android
and 108S.

Chapter 4 - Modularization 50



‘ Android app \ ‘ iOS app \

e = KMP Shared module i e o

Pros
+ A simple design with a single module reduces cognitive
load. You don't need to think about where to put your
functionality or how to logically divide it into parts.

» Works very well as a starting point.

Cons

+» Build time increases as the shared module grows.

» This design doesn't allow for separate features or having
dependencies only in the features that the application
needs.

Chapter 4 - Modularization

51



When a KMP project grows, it's common to add more shared
modules besides the initial one. This happens naturally when
implementing new functionalities in KMP instead of using
native modules, or when teams gradually adopt this
technology. To maintain scalable and manageable code, it's
recommended to split the shared module into smaller feature
modules. Let's see this represented in the following image.

‘ Android app ‘ ‘ I0S app ‘

\
~—|-| feature:home ‘ L .feature:checkout |<—4
A

A

‘ :data:books I

Example of a book selling app
As shown in the image, we have two modules (features) that
represent different flows in our application, along with a
shared module (data) that these features use. Additionally,
we have sub-modules to manage specific information in our
application (in this case, books). While this approach offers
clear benefits in the separation of responsibilities, it also
presents specific challenges when generating binaries for

each platform (especially in 108, as we'll see later).

Chapter 4 - Modularization 52



Pros
« Separation of concerns for shared code.

+ Better scalability.

Cons

+ More complicated setup, including umbrella framework
configuration.
+ More complex dependency management across modules.

Multiple Shared Modules

When working with multiple shared modules, there are
important differences between platforms. In Android, the
application can directly depend on all or some feature modules
as needed, as it uses Gradle modules for its definition. On the
other hand, the iOS application can only depend on a single
framework generated by the Kotlin Multiplatform module. To
handle multiple modules in iOS, it's necessary to create an
additional module called the Umbrella module, which depends
on all modules in use. This module is configured to generate a
framework containing all modules, known as the Umbrella

framework.

Chapter 4 - Modularization 53



Feature module 1 Feature module 2 Feature module N

Android app Umbrella framework

-

i0S app

The Android application can depend on the Umbrella module to
maintain consistency, or use feature modules separately. The
Umbrella module typically contains utilities and dependency
injection configurations. The Umbrella framework only exports
selected modules, especially when consumed as a remote
dependency. This helps minimize the final artifact size and
excludes unnecessary auto- generated code. An important
limitation of this approach is that the i1OS application must
consume all feature modules included in the Umbrella
framework, without being able to select only some of them.

Chapter 4 - Modularization 54



Why do you need an Umbrella framework?
While it's technically possible to wuse multiple Kotlin

Multiplatform module frameworks in 108, it's not recommended.
When a module is converted to a framework, it includes all its
dependencies; if these are duplicated, it not only increases the
application size but can also generate conflicts and errors. Kotlin
avoids generating common framework dependencies to maintain
an efficient binary and eliminate redundancies. Sharing these
dependencies is not feasible because the Kotlin compiler cannot
anticipate the requirements of other compilations. The optimal
solution is to implement an Umbrella framework, which prevents
dependency duplication, optimizes the final result, and avoids

compatibility issues.

For more details about the exact limitations, please check the

TouchLab documentation.

Chapter 4 - Modularization 55


https://touchlab.co/multiple-kotlin-frameworks-in-application/
https://touchlab.co/multiple-kotlin-frameworks-in-application/

Android app 1 ‘ i0S app 1

J

_

—»|  Umbrella module ]4 --------------- | Umbrella ‘
framework
T
‘ -feature:home I ‘ :feature:checkout I
; :
i | -data:books }

Exposing Multiple KMP Frameworks in Detail
Kotlin Multiplatform has a fundamental limitation: the i10S
platform cannot access Kotlin modules individually.
Instead, it generates a single framework containing all
exported Kotlin classes. While it is possible to generate
multiple frameworks, this practice is inefficient as it
produces a larger binary and creates overhead due to the
duplication of Kotlin standard library classes. Additionally,
all shared dependencies between Kotlin modules are also
duplicated. In our example, we would have something like
this:

Chapter 4 - Modularization 56



Home Framework Checkout Framework

[ oo =t pods |

The Book entity from the Home framework and the Book
entity from the Checkout framework would represent the
same entity defined in the data module. However, in our i0S
application, these would be treated as two different entities
in different contexts, generating unnecessary duplication.
The main limitation is that, in 10S, common classes from
each framework are treated as different types. Therefore, a
shared data structure cannot be wused interchangeably
between different frameworks.

Chapter 4 - Modularization 57



Let's see our example implementation

Let's see how to implement what we discussed above in
code. We'll create a KMP project that will include the
Home, Checkout, and Data modules, following the structure
we've seen in the examples. In this first implementation,
we'll separate the code using frameworks in 10OS and
modules in Android. The interesting part will be observing
the behavior of our objects when working with multiple

frameworks in i0S.
To illustrate this, we'll use the following class diagram:

BookRepository

+ books:Map<String, Book> = mutableMapOf() +id: String

+ litle: String

+ findByld(String): Boak + author: String
+ gethll():List<Book=> + price: Double

ProcessCheckout Getall

- repository:BookRepository - repository: BookRepository

+ invoke(Book):Void + invoke():List<Book>

As we can observe, the ProcessCheckout class from the
:checkout module and the GetAll class from the :home module
depend on BookRepository, which is located in the :data:book

module. The structure of our project would look like this:

Chapter 4 - Modularization 58



Project - €

r

M b
W Pt

~ [[3 kmp-multi-module-example [kmp-multi-module]

n
T

»

"
-

.gradle
[0 .idea
[ androidApp
) build
[@ checkout
[ data
[T gradie
2 home
[DiosApp
[ shared
) .gitignore
&7 build.gradlekts
{2} gradle.properties
[-] gradlew
= gradlew.bat
{53 local.properties
M+ README.md
&7 settings.gradle.kts

> [h External Libraries

=P scratches and Consoles

As we can observe in the diagram below,

Chapter 4 - Modularization

59



‘ Android app ‘ | i0S app ]

Example of a book selling application.

Android and 10S applications will be responsible for
orchestrating the modules (frameworks in 10S) through native
code (Kotlin or Swift).

The implementation of multiple modules/frameworks generated from KMP
modules can facilitate the gradual adoption of this technology in existing
projects. However, it's important to consider the limitations mentioned
above if we opt for this approach.

Chapter 4 - Modularization 60



Let's start with Android Our Android application will use

the following dependency configuration

dependencies {
//Checkout

implementation(projects.checkout)

//Home

implementation(projects.home)

//Data

implementation(projects.data)

implementation(libs.
implementation(libs.

implementation(libs

compose.ui)
compose.ui.tooling.preview)

.compose.material3)
implementation(libs.

androidx.activity.compose)

debugImplementation(libs.compose.ui.tooling)

We will include the modules :checkout, :home and :data in our

build.gradle.kts file. Next, we'll see a practical example of using

classes between different modules and how the references from

the :data module work, which is shared between the feature

modules. For this, we'll create a ViewModel that will

instantiate the ProcessCheckout and GetAll classes, both

sharing a common dependency: BookRepository .

Chapter 4 - Modularization

61



(@& MainViewModel kt

package io.github.santimattius.kmp.android

import io.github.
import io.github.
import io.github.
import io.github.

santimattius.kmp.data.Book
santimattius.kmp.data.BookRepository
santimattius.kmp.checkout.ProcessCheckout
santimattius.kmp.home.GetAll

class MainViewModel {
private val repository = BookRepository()

private val processCheckout = ProcessCheckout(repository)
private val getAll = GetAll(repository)

fun checkout() {

val books

val book:

= getAll.invoke()
Book = books.first()

processCheckout. invoke(book)

19 H-

Looking at the imports, we'll notice that BookRepository comes

from data and is the same dependency used by both home and

checkout modules. The same happens with the book entity, thus

avoiding dependency duplication. Now, let's look at the same
example in 10S to verify that the behavior is different. Like in
Android, let's start by configuring our Podfile with the :home

and :checkout modules in our 10S application.

Chapter 4 - Modularization

62



o !_::'psApp B iosApp ) [ iPhone 16 Pro (18.1)

ain
T Podfile
Y Peds | % Podfile } No Selection

target ‘iosApp' do
use_Trameworks!
platform :ios, '16.8
pod ‘'home', :path => '../home'

pod ‘checkout', :path => '../checkout'
pod ‘data‘', :path => °../data
7 end

Now let's implement our previous example in Swift.
import Foundation
import home
import checkout

class MainViewModel {

let bookRepository = DataBookRepository()

let processCheckout = ProcessCheckout(repository:
bookRepository)

let getAll = GetAll(repository: bookRepository)

func checkout() {
let books = getAll.invoke()
let currentBook = books.first

processCheckout.invoke (book: currentBook)

F
Similar to the previous example in Kotlin, we would have a
BookRepository instance that we will use in both
ProcessCheckout from the checkout framework and GetAll from
the home framework. However, let's look at the first issue in the

following image.

Chapter 4 - Modularization 63



F ""_“"pp B saze § [ #nens 16 Pro (18.1) Build Succesded | Todsy 31 12:09PM @1 4z o +
3 Martigmiode
D losApp | & losApp | 3 Mainviewsscsel 2 (B processCheciout L=}
import Foundation
import home
import checkout
clase MainViewdodel {

let bockRepositery = DataBookRepository()

O Ambiguous use of “initl)’

17 let processCheckout = ProcessCheckout
© Found this candidate In module 'hame’ Show
let getAll = GetAlllrepositery: Datz (harme. DataBookRepasitony)
© Found this candidate in madule "checkout’ Show

[checkout. DataBookRepositary)
func checkoutl) {

The compiler renames the BookRepository class to
DataBookRepository for use in Swift.

When trying to create an instance of the DataBookRepository
class, the compiler shows an "Ambiguous use of init" error.
This occurs because the compiler cannot determine which
constructor to use, as there are two references with the same
name, as we'll see in the following images. We'll proceed by
removing the line causing the error and continue with the
implementation. This will allow us to confirm that the issue
arises  because the DataBookRepository  class is
simultaneously defined in both the checkout and home
frameworks.

© Ambiguous use of 'init()’
© Found this candidate in module 'home' (home.DataBookRepository) Show

© Found this candidate in module 'checkout' (checkout.DataBookRepository) Show

Chapter 4 - Modularization 64



Pods>Development Pods>home>Frameworks>home.framework>Headers>home.h
import Foundation

10 import home

11 //import checkout

class Mainviewsmodel {

let bookRepository = DataBookRepository()

T &l c HomeDataBookRepository y)

B

19 HomeDataBookRepositary

20

‘! class DataBookRepository : KotlinBase

; @ Pods ) Development Pods ) home ) Fr...) home.framework )} Headers ) home.h:162

Ta+ rlurrantRAank = hanke Firck
Pods>Development Pods>checkout>Frameworks>checkout.framework>Headers>checkout.h

7 import Foundation
E 10 //import home
11 import checkout
class MainViewModel {
18 let bookRepository = DataBookRepository()
’ 1 DataBookRepository

19 1 [ initg

‘ class DataBookRepository : KotlinBase
22 i
3 B Pods ) Development Pods ) checkout }..eckout.framework } Headers ) checkouth

e RS A N L e

thus showing the duplication of classes. The same happens with
the Book entity.

Chapter 4 - Modularization 65



import Foundation
import home
import checkout
1 class MainviewModel {
let processChecksut = ProcessCheckout(repository: DataBookRepository())
let getAll = GetAll(repository: DataBookRepository())
fune checkout() {
1l let books = getAll.invoke()|

let currentBook = books.first

processCheckout.invoke(book: gurrentBook)

¥ @ Cannot convert value of type "home.DataBook® to expected
argument type 'checkout.DataBook’

© Vvalue of optional type "DataBook?' must be unwrapped 10 a value of
type 'DataBook’

Implementing the Umbrella Module

Let's solve our problem by implementing the Umbrella module.
We'll create a :shared module that will encompass our :checkout
and :home features, allowing us to include a single framework in
10S.

Android app

:shared
(umbrella module)

il

Definition of the shared module in our project.
Chapter 4 - Modularization 66



With this modification, the project structure will look like this.

Project - £,

M S
L )

~ 3 kmp-multi-module-example [kmp-multi-module]

?

?

&

gradle

[ .idea

[~ androidApp
build

[a checkout

(3 data

[ gradle

(s home

[DiosApp

(g shared

) .gitignore

&7 build.gradle kts

€] gradle.properties

[-] gradlew

= gradlew.bat

{83 local.properties

M4 README.md

&7 settings.gradle kts

» [hExternal Libraries

=Y scratches and Consoles

In the 'shared’ module, we will define the dependencies

mentioned above. For this, we will add the following

configuration in our build.gradle kts file:

Chapter 4 - Modularization 67



kotlin {

/...

cocoapods {

summary = "Some description for the Shared Module"
homepage = "Link to the Shared Module homepage"
version = "1.0"

ios.deploymentTarget = "16.0"

podfile = project.file("../iosApp/Podfile")

framework {
baseName = "shared"
export(project(":home"))
export(project(":checkout"))

sourceSets {
commonMain.dependencies {
api(project(":home"))
api(project(":checkout"))
¥
commonTest.dependencies {
implementation(libs.kotlin.test)

by

In the commonMain dependencies, we include the :home and

:checkout modules, along with the definition of our

Cocoapods framework. The respective exports allow us to

access these dependencies from our iOS code. Next, we'll see

how our Podfile is configured with the shared module.

Chapter 4 - Modularization



X iosApp
include-umbrella-module

iosapp } [ iPhone 16 Pro (18.1)
- 4 = MainViewModel % Podfile
Pods | 9 Pedfile ) Mo Selection

target 'iosApp' do

use_frameworks!

platform :ios, '16.@'

pod ‘'shared', :path => '../shared’
end

To conclude the example, let's look at the implementation of
the code that previously had incompatibilities due to conflicts
between the :home and :checkout frameworks.

P iosApp

include-umbrella-module Lot b | DG,

B | £ 3 MainViewModel
iosApp | & iosApp | 3l MainViewModel ) Mo Selection

import Foundation
import shared

class MainviewModel {

private let bookRepository: BookRepository
private let processCheckout: ProcessCheckout
private let getAll: GethAll

init() {
self.bookRepository = BookRepository()
self.processCheckout = ProcessCheckout(repository: bookRepository)
self.getall = GetAll(repository: bookRepository)

}

fune chackout{) {
let books = getAll.invoke()
guard let currentBook = books.first else {
return

}

processCheckout.invoke(book: curremtBook)

Chapter 4 - Modularization 69



As we can observe, it is now possible to reuse the
BookRepository instance in both ProcessCheckout and GetAll
classes, since the type definition is the same regardless of which
module it belongs to. This same behavior applies to the Book
entity, as evidenced in the checkout function.

Compilation

One of the main benefits of modularization is the reduction in
compilation times, as unchanged modules can be cached. In
theory, this works well, and the Android application effectively
builds faster when only some modules have been modified.
However, a challenge arises when building the Kotlin/Native
part of KMM, specifically with the gradle tasks
linkDebugFrameworklos and linkReleaseFrameworklos. These
tasks are time-consuming, regardless of the number of modified
modules.

Despite this, I've found that it's not always necessary to rebuild
the shared module. When making minor changes, it's enough to
build the Android application or run 1OS tests in the modified
module for the changes to be reflected in the 10S application. It's
even possible that tests in other modules will also work correctly.
While there's no exact formula for this, this approach definitely
speeds up the feedback cycle when building the 10S application.
However, I believe that implementing automated tests for KMM
logic will result in an even faster and more efficient feedback
cycle than running Android or 10S applications with each

change.

compilarKotlinlosArmé64 and compilarKotlinlosX64 significantly
speed up compilation time.

Chapter 4 - Modularization 70



Chapter 5: Testing

71



Chapter 5: Testing

Kotlin Multiplatform has a fundamental goal: to allow
developers to write code once and run it on multiple platforms.
However, any error in this shared code can impact all platforms
simultaneously.

As Uncle Ben said: "With great power comes great
responsibility." For this reason, testing shared code is
fundamental.

All software development needs testing to ensure code quality
and reliability. In this regard, Kotlin Multiplatform provides
various tools and options to perform effective testing across all
supported platforms.

Kotlin Multiplatform not only makes it easy to share code
between platforms but also allows writing tests that work across

all platforms we support.

Chapter 5 - Testing 72



Benefits of Testing in Kotlin Multiplatform
Testing in Kotlin Multiplatform offers several key benefits:

« Cross-platform consistency: Tests run on all supported
platforms, ensuring uniform quality across the entire
application.

. Development efficiency: Writing tests once for all platforms
significantly reduces time and effort compared to creating
separate tests.

. Early error detection: Automated tests identify code issues
from the start, allowing corrections before they escalate.

. Greater confidence in changes: A robust test suite allows
developers to modify code safely, knowing that tests will

detect potential issues.

Chapter 5 - Testing 73



Tools for Testing in Kotlin Multiplatform

Kotlin Multiplatform provides a range of tools and libraries for
testing across all compatible platforms. The following libraries
are available for writing tests. You can find references in the

kmp-awesome repository.

. Kotest - test framework: Powerful, elegant and flexible test
framework for Kotlin with additional assertions, property
testing and data driven testing

« Turbine - test library: A small testing library for
kotlinx.coroutines Flow

« MockingBird - test framework: A Koltin multiplatform
library that provides an easier way to mock and write unit
tests for a multiplatform project

« Mockative - Mocking with KSP: Mocking for Kotlin/Native
and Kotlin Multiplatform using the Kotlin Symbol
Processing API (KSP)

« MocKMP - Mocking with KSP: A Kotlin/Multiplatform
Kotlin Symbol Processor that generates Mocks & Fakes.

« Mokkery - Mocking library: Mokkery is a mocking library
for Kotlin Multiplatform, easy to use, boilerplate-free and
compiler plugin driven. Highly inspired by MockK.

« KLIP - Snapshot manager for tests. Kotlin Multiplatform
snapshot manager for tests. Automatically generates and
asserts against a persistent Any::toString() representation of
the object until you explicitly trigger an update. Powered by
kotlin compiler plugin to inject relevant keys and paths.

. Assertk - Fluent assertions library

Chapter 5 - Testing 74


https://github.com/terrakok/kmp-awesome#-test
https://github.com/terrakok/kmp-awesome#-test

While most of these tools are community creations, several have
achieved widespread adoption due to their popularity.
In this chapter, we'll explore some of these tools as examples.

Types of Tests

When discussing tests, we generally refer to different types,

represented in a pyramid as shown below.

A

Fidelity

Execution time
Maintenance D
Debugging

Integration Tests

\/
- -

# of tests

As shown in the pyramid axes, the distribution is based on two
fundamental aspects of testing: execution Speed and test
Coverage. The goal of Kotlin Multiplatform is to share
business logic across multiple platforms. Since UI tests will
depend on platform- specific frameworks, we'll focus on unit
and integration tests.

Chapter 5 - Testing 75



Essential Unit Tests

To follow best practices, implement unit tests for the following
components:

« For ViewModels or presenters.

» For the data layer, especially repositories. This layer should
be mostly platform-independent, allowing test doubles to
replace databases and remote data sources.

* For other platform-independent layers, such as the Domain
layer, including use cases and interactions.

« For utility classes, such as string manipulation operations
and mathematical calculations.

What do we understand as a unit in our unit tests (Subject Under
Test - SUT)?

What do we mean by unit? Let's define this fundamental concept
and its principles.

There's a common tendency to establish a one-to-one
relationship between tests and classes. However, this practice
can result in fragile tests that depend too heavily on specific
implementations. The true goal isn't to achieve 100% coverage,
but to ensure our tests effectively verify code behavior.

To develop more robust tests, let's consider two essential
principles: tests should only change when business specifications
change, and code refactoring should not affect the tests.

Chapter 5 - Testing 76



Integration

In this type of test, we focus on validating the interaction between
our application components in a broader context. This involves
more complex scenarios that include interactions with external

elements, such as HTTP request libraries and storage systems.

It's important to consider this point when choosing an external library. If
it includes testing tools, it will facilitate this type of testing (we'll see this in
more detail in the example).

How to identify the scope of our tests

Let's see these concepts in action through a practical example: a
simple application that displays a list of Rick and Morty
characters.

IPhone 16
L] T

Chapter 5 - Testing 77



The application consists of the following components

[ CharactersViewModel J

-y - —

getAllCharacters | [ RefreshCharacters

(. S \ J

xT\ B j
r_ -

- S
_ - )
-
- ! r
| <Linterface>> | <{interface>>
CharacterNetworkDataSource CharacterLocalDataSource
— \_ J

KtorCharacterNetworkDataSource ) EQLE}ElightCharucter‘LocaIDatuSourcﬂ

For the implementation, we use a ViewModel that acts as a

state container for the views. The application has two main use
cases: GetAllCharacters and RefreshCharacters, which manage
the information. The CharacterRepository implements the
repository pattern and serves as a single source of truth,
interacting with two data sources: a local one
(CharacterLocalDataSource) and a remote one
(CharacterNetworkDataSources). These components are
defined as contracts since they depend on concrete
infrastructure implementations, such as a database and an
HTTP client for server requests.

Chapter 5 - Testing 78



Now, how do we determine the scope of our tests? Let's define
what each type represents:

« Unit Test: Evaluates each use case individually, from its logic
to the interfaces, without including infrastructure
implementations.

« Integration Test: Evaluates the interaction (integration) with
the infrastructure implementation.

With these concepts clear for our application, let's look at the
scope in the following image.

Integration Testing

lr CharactersViewModel ]
.
Unit Testing
. r | ™
i B — A N
| 1 | Re
\ J
A A
' Y
i
\.
' - 'S
24 |
LS A A
(Y-tu.'CP!u-'ucthNethUFkﬁﬁtcibUU-’Cc] E:Q! DelightCharacterl ucuchltcl&uurc‘J
Y J

Before implementing the tests in our example, let's see how to
configure and run them in our project.

Chapter 5 - Testing 79



How to Configure and Run our Tests

Just like in shared code, we'll need specific dependencies for testing.
For this, we'll configure a dedicated sourceset/target for tests. Next,
we'll look at the necessary configuration for Android and iOS.

kotlin{
sourceSets {
commonTest.dependencies {
implementation(kotlin("test-common"))
implementation(kotlin("test-annotations-common"))
implementation(libs.resource.test)
implementation(libs.kotlinx.coroutines.test)
implementation(libs.turbine)
implementation(libs.kotest.framework.engine)

implementation(libs.ktor.client.mock)

implementation(libs.koin.test)

}

val androidTest = sourceSets.getByName("androidUnitTest") {
dependencies {
implementation(kotlin("test-junit"))
implementation(libs.junit)
implementation(libs.sqldelight.jvm)

iosTest.dependencies {
//ios testing dependencies

}

Chapter 5 - Testing 80



In most cases, it's not necessary to configure platform-specific
dependencies since our main goal is to validate shared code. Once
the dependencies are configured in their respective sourcesets,
we'll define the directory for tests, as shown in the following

image.

Project B & X
< [@ shared
.gradle
> build

> [ schemas
v [Dsre
> [@ androidMain [main]
~ [[gandroidUnitTest [unitTest]
~ [Dkotlin
~ [5] com.santimattius kmp.integration.data.db
[< test.database.android.kt
> [ commonMain
~ [ commonTest
~ [Jketlin
< [ com.santimattius.kmp
> [ integration
> 3 unit
(5 JsonLoader
.2 resources
> [ iosMain
~ [giosTest
~ [Jkotlin
« [ com.santimattius.kmp.integration.data.db
[< test.database.ios.kt
&7 build.gradlekts

Chapter 5 - Testing 81



How to Run our Tests

Tests can be executed in two ways: individually or all at once.
To run a specific test, the IDE displays a play button next to
each function marked with @ Test

(& RefreshCharactersTestkt

package com.santimattius.kmp.unit.domain.mokkery
import ...
[> elass RefreshCharactersTest {
private val characters = CharactersResponseMother.characters()
private val networkDataSource = mock<CharacterNetworkDataSource=()
private val lecalDataSource = InMemoryCharacterLocalDataSource()

private val repository = CharacterRepesitery(localDataSource, networkDataSource)

private val refreshCharacters = RefreshCharacters{repository)

BTest

[> fun “When I ecall refresh update the local storage’ () = runTest {...}
BTest

(=2 fun "When the service returns an empty response () = runTest {...}
@Test

[ fun "When the service returns an failure response’() = runTest {...}

when pressing this button, a dropdown menu will appear that
allows you to select the platform on which you want to run
your tests

@Test
> fun “When I call refresh update the loc

Run Tasks for When | call refresh update the local s...

[] £ android (local)
©1 iosSimulatorArm64
Select several tasks to run them at

once r
i

]

Chapter 5 - Testing 82



Alternatively, we can run all tests using the Gradle verification

task, either from the IDE or from the command line.

v &7 kmp-for-mobile-native-developers
> [z Tasks
> &7 composeApp
&7 shared
-~ [[@ Tasks
> [ android
> [ build
> [@ documentation
> [ help
> [Qide
> [@install
> [ interop
> [@ skie
> [@ other
> [& sqldelight
v [ verification
€} allTests
51 check

./gradlew :shared:allTests

This task will run all our tests across the different platforms
configured in the project. Now that we know how to configure
and run our tests, let's see how to implement them and what

approaches Kotlin Multiplatform offers.

Chapter 5 - Testing 83



Let's Code

Let's start with unit tests for our use cases. Before we begin, it's
important to familiarize ourselves with some key concepts that
will help us create efficient unit tests that provide quick
feedback.

How to Avoid Slow and Coupled Tests

« Fakes: Fakes are alternative implementations that we
develop in parallel with the real implementation.

« Stubs: Stubs are similar to Fakes, but with a key difference:
they contain predefined values that don't need to be passed
as arguments when instantiating them.

« Mocks: Mocks have an important conceptual difference:
besides modeling the response of the element, they allow us
to validate its interaction. This means we can verify both
behavior and collaboration between classes.

Chapter 5 - Testing 84



First Unit Test

Let's start with the use case for updating characters in the

local data source. The following sequence diagram will help us

visualize the update flow in our code.

l RefreshCharacters ‘ l CharacterReposilory | | CharactarNatworkDataSource | | AP1 l I CharacterLocalDataSource I | (a]:] |

T T

|
invoke refresh |

T

get characiers

T
| |
| |
| |
| |

|

|
|

i,
charactors
lish of characters

I
wpdate characters

uli oparation

e

|

In our example, we'll need to create test doubles for our data

sources (DB and API). First, we'll implement them manually, and

then we'll use a mocking library. Let's

start with the

implementation of CharacterLocalDataSource:

class InMemoryCharacterLocalDataSource :

/...
¥

Chapter 5 - Testing

CharacterLocalDataSource {

85



An in-memory implementation will store the information only
during the test context. And for our CharacterNetworkDataSource

we will create a Fake implementation.

class FakeCharacterNetworkDataSource : CharacterNetworkDataSource {
private val jsonLoader = JsonLoader()

override suspend fun find(id: Long): Result<NetworkCharacter> {
return all().fold(onSuccess = { characters ->
runCatching { characters.first { it.id == id } }
}, onFailure = { Result.failure(it) })
}

override suspend fun all(): Result<List<NetworkCharacter>> {
return runCatching {

jsonLoader.load<CharactersResponse>("characters.json").results
}
¥

In this implementation, we use a JsonLoader class that loads a
JSON file (which contains a copy of the real API response).
This allows us to work with realistic data during testing. To
implement this JsonLoader, we use kotlinx-resources, a library
that will be very useful in our upcoming tests. This tool makes

it easy to load files from the local project directory.

Chapter 5 - Testing 86


https://github.com/goncalossilva/kotlinx-resources/tree/main
https://github.com/goncalossilva/kotlinx-resources/tree/main
https://github.com/goncalossilva/kotlinx-resources/tree/main

class JsonlLoader {

private val json = Json {
ignoreUnknownKeys = true

fun load(file: String): String {
val loader = Resource("src/commonTest/resources/${file}")
return loader.readText()

internal inline fun <reified R : Any> load(file: String) =
this.load(file).convertToDataClass<R>()

internal inline fun <reified R : Any>
String.convertToDataClass(): R {
return json.decodeFromString<R>(this)

}
This avoids having to create complex instances and manually

generate data for tests.

Tip: To improve the above, we could apply the Object Mother
Pattern, which will allow us to have more readable, maintainable,
and quickly generated tests.

There are several strategies for managing test instances:

« Traditional
. Builder Pattern

« Object Mother

. Named Arguments

Chapter 5 - Testing 87



Now that we have our test doubles ready, let's implement the first
test to validate the successful case.

class RefreshCharactersTest {

private val networkDataSource = FakeCharacterNetworkDataSource()

private val localDataSource = InMemoryCharacterLocalDataSource()

private val repository = CharacterRepository(localDataSource,
networkDataSource)

private val refreshCharacters = RefreshCharacters(repository)

@AfterTest
fun tearDown() {
localDataSource.clear()

}

@Test

fun “When I call refresh update the local storage () = runTest {
// test code

}

First, we create the necessary instances for our tests: the object
under test and the repository. The CharacterRepository and
RefreshCharacters classes are real implementations, not
mocked.

Another alternative would have been to create a test double for our
repository, but as we saw earlier, we only create test doubles for those
components that have external dependencies, such as input/output
operations.

Once the instances are generated, we define the test. Here we can
use the Given-When-Then pattern to structure the test, invoke
the use case, and perform the assertion on the datasource. In this

case, since we use Flow, we are using Turbine to interact with

flows during testing.

Chapter 5 - Testing 88


https://github.com/cashapp/turbine
https://github.com/cashapp/turbine

class RefreshCharactersTest {

private val networkDataSource =
FakeCharacterNetworkDataSource()

private val localDataSource =
InMemoryCharacterLocalDataSource()

private val repository =
CharacterRepository(localDataSource, networkDataSource)

private val refreshCharacters =
RefreshCharacters(repository)

@AfterTest
fun tearDown() {

localDataSource.clear()

}

@Test
fun “When I call refresh update the local storage () =
runTest {
//Given
//When
refreshCharacters.invoke()
//Then
localDataSource.all.test {

assertEquals(true, awaitItem().isNotEmpty())

But how do we validate the case when the NetworkDataSource
returns an empty response? For this, we need to modify our

data source. The solution is to implement a stub.

Chapter 5 - Testing 89



class StubCharacterNetworkDataSource(

private val characters: MutableList<NetworkCharacter> =
mutableList0f()
) : CharacterNetworkDataSource {

fun setCharacters(characters: List<NetworkCharacter>) {
this.characters.clear()
this.characters.addAll(characters)

} override suspend fun find(id: Long): Result<NetworkCharacter>

{
return all().fold(onSuccess = { characters ->
runCatching { characters.first { it.id == id } }
}, onFailure = { Result.failure(it) })
+

override suspend fun all(): Result<List<NetworkCharacter>> {
return runCatching { characters }

I
F

And the test would look like this

class RefreshCharactersTest {

private val characters =
JsonLoader.load<CharactersResponse>("characters.json").results

private val networkDataSource =
StubCharacterNetworkDataSource(characters.toMutableList())

private val localDataSource = InMemoryCharacterLocalDataSource()

private val repository = CharacterRepository(localDataSource,
networkDataSource)

private val refreshCharacters = RefreshCharacters(repository)

@Test
fun “When I call refresh update the local storage () = runTest {
refreshCharacters.invoke()
localDataSource.all.test {
assertEquals(true, awaitItem().isNotEmpty())

F

@Test
fun ‘When the service returns an empty response () = runTest {
networkDataSource.setCharacters(emptyList())
refreshCharacters.invoke()
localDataSource.all.test {
assertEquals(true, awaitItem().isEmpty())

I
}

Chapter 5 - Testing

90



As we need to generate different test scenarios, it's essential to
have more flexible mocks. However, we must remember that
this code also requires maintenance. For this reason, it's
convenient to use mocking libraries like Mockk or Mockito,
which will be familiar to Android developers. While Kotlin
Multiplatform doesn't yet have solutions as established as
these, they have served as inspiration for the community. In
our example, we'll use Mokkery, a library inspired by Mockk

according to its documentation.

Mockk is a mocking library implemented entirely in Kotlin that,
according to its documentation, offers multiplatform support. However,
it still has some issues with native platforms like iOS and macOS.

Let's see how to replace our mocks using Mokkery

Chapter 5 - Testing 91


https://mockk.io/
https://site.mockito.org/
https://mockk.io/
https://mockk.io/
https://mockk.io/
https://site.mockito.org/
https://mokkery.dev/
https://mokkery.dev/
https://mokkery.dev/

import dev.mokkery.answering.returns
import dev.mokkery.everySuspend
import dev.mokkery.mock

class RefreshCharactersTest {

private val characters = CharactersResponseMother.characters()

private val networkDataSource =
mock<CharacterNetworkDataSource>()

private val localDataSource = InMemoryCharacterLocalDataSource()

private val repository = CharacterRepository(localDataSource,
networkDataSource)

private val refreshCharacters = RefreshCharacters(repository)

@Test
fun “When I call refresh update the local storage () = runTest {
//Given
everySuspend {
networkDataSource.all()
} returns Result.success(characters)
//When
refreshCharacters.invoke()
//Then
localDataSource.all.test {
assertEquals(true, awaitItem().isNotEmpty())
+

@Test
fun “When the service returns an empty response () = runTest {
//Given
everySuspend {
networkDataSource.all()
} returns Result.success(emptyList())
//When
refreshCharacters.invoke()
//Then
localDataSource.all.test {
assertEquals(true, awaitItem().isEmpty())
+

F

With  Mokkery, we can <create a mock of the
CharacterNetworkDataSource interface in the following way:

private val networkDataSource = mock<CharacterNetworkDataSource>()

Chapter 5 - Testing 92



and configure the behavior of its methods

everySuspend {
networkDataSource.all()
} returns Result.success(characters)

With a mocking library, we can also easily perform other types
of verifications, such as checking that the all method of

networkDataSource was called exactly once.

@Test
fun “When I call refresh update the local storage () =
runTest {
//Given
everySuspend {
networkDataSource.all()
} returns Result.success(characters)
//When
refreshCharacters.invoke()
//Then
verifySuspend(mode = exactly(1)) {
networkDataSource.all()
}

localDataSource.all.test {

assertEquals(true, awaitItem().isNotEmpty())
}

Thanks to Mokkery, we can now test the remaining cases more

efficiently and clearly.

Setup | Mokkery

How to add Mokkery to your Gradle project rapidly! @ M
2 Mokkery
A https://mokkery.dev/docs/Setup

It is recommended to generate mocks only for interfaces that are coupled to
external data sources, as we saw in the previous example.

Chapter 5 - Testing 93


https://mokkery.dev/docs/Setup
https://mokkery.dev/docs/Setup

Integration Tests

As shown in the initial diagram, we will validate the integration
of components and their behavior.

Integration Testing
' ™
[ CharactersViewModel ]

T — s e Y
| 1

GetAllCharacters RefreshCharacters
4 \ .J

¢ fb
\ : P —
|
' Ty
| CharacterRepository
iy
A A
—.JI ~

|

<{interface>>

CharacterNetworkDataSource

_ |

<<interface>>
CharacterLocalDataSource

)

[jKtorCharucterNatwurkDataSource:] [EQLDelighLChuracterLocaantaSaurc%]

Integration tests allow us to validate the infrastructure, that
is, the external libraries we use to manage our data. In our
case, we use Ktor for HTTP requests and SQLDelight for

local storage. Both libraries provide specific tools for testing.

Chapter 5 - Testing 94



Testing with Ktor

Ktor provides an Engine that allows us to create simulations of
our services. The implementation is simple: we just need to
define an Engine of type MockEngine and incorporate it into
our client configuration.

val mockEngine = MockEngine { request ->
respond (
content = ByteReadChannel("""{"ip":"127.0.0.1"}"""),
status = HttpStatusCode.OK,
headers = headersOf(HttpHeaders.ContentType,
"application/json")

)

To facilitate testing with Ktor, we will create some simple
abstractions that will allow us to reuse configurations across all
our tests. We will implement the following code to configure the
Mock engine for testing.

Chapter 5 - Testing 95



fun testKtorClient(mockClient: MockClient = MockClient()):
HttpClient {
val engine = testKtorEngine(mockClient)
return HttpClient(engine) {
install(ContentNegotiation) {
json(Json {
prettyPrint = true
isLenient = true
ignoreUnknownKeys = true

i)

private fun testKtorEngine(interceptor: ResponseInterceptor)
= MockEngine { request ->
val response = interceptor(request)
respond (
content = ByteReadChannel(response.content),
status = response.status,
headers = headers0f(HttpHeaders.ContentType,
"application/json")

)

You can find the complete code in the file MockClient.kt.
Now let's see how to implement our integration tests

Chapter 5 - Testing 96



class RefreshCharactersIntegrationTest {

private val jsonResponse = JsonlLoader.load("characters.json")
//KtorClient setup

private val mockClient = MockClient()

private val ktorClient = testKtorClient(mockClient)

private val networkDataSource =

KtorCharacterNetworkDataSource(ktorClient)

private val localDataSource = InMemoryCharacterLocalDataSource()
private val repository = CharacterRepository(localDataSource,

networkDataSource)
private val refreshCharacters = RefreshCharacters(repository)

@AfterTest
fun tearDown() {
localDataSource.clear()

@Test
fun “When I call refresh update the local storage () = runTest {

//Given
val response = DefaultMockResponse(jsonResponse,

HttpStatusCode.0K)
mockClient.setResponse(response)
//When
refreshCharacters.invoke()
//Then
localDataSource.all.test {

assertEquals(true, awaitItem().isNotEmpty())

In the test, we will «create an instance  of
KtorCharacterNetworkDataSource, which concretely
implements our CharacterNetworkDataSource interface. This
time we will initialize it with a special HttpClient for testing that

uses MockEngine.

Chapter 5 - Testing 97



Let's apply the same approach to our CharacterlLocalDataSource.

Testing | Ktor
Ktor provides a MockEngine that simulates HTTP calls without
connecting to the endpoint.

https://ktor.io/docs/client-testing.html

Testing with SQLDelight

SQLDelight can be used for testing, but it requires platform-
specific configuration. In its implementation, we need to define

an appropriate driver for each platform.

// database.common.kt expect class DriverFactory {

fun createDriver(): SglDriver

fun createDatabase(driver: SqlDriver): CharactersDatabase {
return CharactersDatabase(driver)

// database.android.kt
actual class DriverFactory(private val context: Context) {
actual fun createDriver(): SqlDriver {
return AndroidSqliteDriver(CharactersDatabase.Schema,
context, "app_database.db")
}

//database.ios.kt
actual class DriverFactory {
actual fun createDriver(): SqlDriver {
return NativeSqliteDriver(CharactersDatabase.Schema,
"app_database.db")
}

Chapter 5 - Testing 98


https://ktor.io/docs/client-testing.html
https://ktor.io/docs/client-testing.html
https://ktor.io/docs/client-testing.html
https://ktor.io/docs/client-testing.html

In our case, we have a DriverFactory class implemented in both
Android and 10S, each with its specific drivers. For testing, we
follow the same principle, but apply it to the source code sets
intended for tests.

//test.database.common.kt
expect fun testDbDriver(): SqlDriver

//test.database.android.kt
actual fun testDbDriver(): SqlDriver {
return JdbcSqliteDriver(JdbcSqliteDriver.IN_MEMORY)
.also {
CharactersDatabase.Schema.create(it)
}
}
//test.database.ios.kt
actual fun testDbDriver(): SqlDriver {
return inMemoryDriver(CharactersDatabase.Schema)

by

As we can observe, this library uses a similar concept to what
we implemented in our InMemoryCharacterLocalDataSource,

which is an in-memory implementation.

Let's implement this change in our test.

Chapter 5 - Testing 99



class RefreshCharactersIntegrationTest {
private val jsonResponse = JsonLoader.load("characters.json")

//KtorClient setup

private val mockClient = MockClient()

private val ktorClient = testKtorClient(mockClient)

private val networkDataSource =
KtorCharacterNetworkDataSource(ktorClient)

//SQLDelight setup

private val db = createDatabase(driver = testDbDriver())

private val localDataSource =
SQLDelightCharacterLocalDataSource(db)

private val repository = CharacterRepository(localDataSource,
networkDataSource)

private val refreshCharacters = RefreshCharacters(repository)

@Test
fun “When I call refresh update the local storage () = runTest {
//Given
val response = DefaultMockResponse(jsonResponse,
HttpStatusCode.0K)
mockClient.setResponse(response)
//When
refreshCharacters.invoke()
//Then
localDataSource.all.test {
assertEquals(true, awaitItem().isNotEmpty())

@Test

fun “When the service returns an empty response () = runTest {
//Given
val response = DefaultMockResponse("{}", HttpStatusCode.OK)
mockClient.setResponse(response)
//When
refreshCharacters.invoke()

localDataSource.all.test {
assertEquals(true, awaitItem().isEmpty())

}
} Chapter 5 - Testing 100



Similar to Ktor, we use instances of our local storage
implementation, SQLDelightCharacterLocalDataSource.

Testing: SQLDelight
SQLDelight - Generates typesafe Kotlin APIs from SQL
https://cashapp.github.io/sqldelight/2.0.0/android_sqlite/testing/

So far, we have validated all components of the use case through
our tests. Now, let's see how we can improve the code in our

project and measure its coverage.

Validating our Dependency Injection

In integration tests, we make minimal adjustments to external
library configurations to adapt them to testing needs.
However, this process can become repetitive for each use case.
This is where dependency injection and Koin help us optimize
these configurations. The first step is to configure our test

dependencies with Koin.

val testPlatformModule: Module = module {
single<SqlDriver> { testDbDriver() }
single<MockClient> { MockClient() }
single<HttpClient> { testKtorClient(get()) }

After defining our dependencies, we configure the test to use

Koin.

Chapter 5 - Testing 101


https://cashapp.github.io/sqldelight/2.0.0/android_sqlite/testing/
https://cashapp.github.io/sqldelight/2.0.0/android_sqlite/testing/
https://sqldelight.github.io/sqldelight/2.0.2/android_sqlite/testing/

class RefreshCharactersIntegrationTest : KoinTest {

private val jsonResponse =
JsonLoader.load("characters.json")

//KtorClient setup
private val mockClient: MockClient by inject()

@BeforeTest
fun setUp() {
startkKoin {
modules(
testPlatformModule,
sharedModule

@AfterTest
fun tearDown() {

stopKoin()

@Test
fun “When I call refresh update the local

storage () = runTest {

and in our test we request an instance of the object under

test, in this case RefreshCharacters

Chapter 5 - Testing 102



@Test
fun "When I call refresh update the local
storage () = runTest {
//Given
val useCase = get<RefreshCharacters>() //from
koin
val localDataSource =
get<CharacterLocalDataSource>()
val response = MockResponse.ok(jsonResponse)
mockClient.setResponse(response)
//When
useCase.invoke()
//Then
localDataSource.all.test {
assertEquals(true,

awaitItem().isNotEmpty())
}
}

Coverage Metrics

Test coverage metrics indicate what percentage of code has been
tested, being fundamental to evaluate test quality and identify
areas without coverage. While these metrics don't guarantee the
complete absence of errors, tools like Jacoco and Slather allow
us to calculate them and integrate them into the development
cycle. In Kotlin Multiplatform, we'll use Kover, a Gradle plugin

similar to Jacoco.

Chapter 5 - Testing 103



Kover
Kover is a toolset designed to measure test coverage of Kotlin

code compiled for JVM and Android platforms. Its main
component is a Gradle plugin that we'll explore next.

Kover Features

+ Code coverage measurement through JVM tests
(important: no support yet for JS and native targets).

« Report generation in HTML and XML formats.

« Compatibility with Kotlin JVM and Kotlin Multiplatform
projects.

« Support for Kotlin Android projects with build variants
(note: instrumentation tests on Android devices are not yet
supported).

. Compatibility with mixed Kotlin and Java code.

. Configuration of verification rules with coverage

thresholds in the Gradle plugin.

Integration with JaCoCo library as an alternative for

measuring coverage and generating reports.

Chapter 5 - Testing 104



To implement Kover in our project, we only need to add its
Gradle plugin:
plugins {

id("org.jetbrains.kotlinx.kover") version "0.7.6"

}

Once the plugin is added, we'll be able to run the Kover tasks
available in Gradle.

Chapter 5 - Testing 105



~ &7 kmp-for-mobile-native-developers
» [& Tasks
» &7 composeApp
~ &7 shared
w [g Tasks

¥

]

%

[z android
[z build
[z documentation

: [z help

[z ide

2 install

[Z interop
5 skie

[ other

= sgldelight

« [ werification

@1 aliTests

5 check

@ checkJetifier

#1 checkkotlinGradlePluginConfigurationErrors
& connectedAndroid Test

@ connectedCheck

@ connectedDebugAndroidTest
(&1 deviceAndroidTest

&1 deviceCheck

1 iosSimulatorArmB4Test

] insXB4Test

#1 koverBinaryReport

#1 koverBinaryReportDebug

1 koverBinaryReportRelease

5 koverHtmlReport

@1 koverHtmiReportDebug

@ koverHtmIReportRelease

In this case we will execute

./gradlew :shared:koverHtmlReport

To generate the HTML report shown below

Chapter 5 - Testing

106



shared Coverage Repor

htmiDebugins-3/:

Coverage Summary for Class: CharacterRepository (com.santimattius kmp.data)

cl Mathod, % Branch, % Line, % Instruction, %
(ChamacterRepositony 50% (35 33,3% (26 S52.6% (10119 38,8% (T6/196)
(CharacterReposilcrySadd ToF avorite$1

CharacterReposiiorySiatch$l

CharactorRepasicrySindByidst

G epasionyse avarie$1
Tatal S0% (35 33.3% (28 S2E% (119 38,8% (Ta/106)

package com.santimattius.kep.data

1
2
3 import com.santimattius.kep.dsta.sources.CharacteriocslbataSource
4 import com.santimattius.kep.dsta.sources.CharacterietuarkdataSource
% import com.santimattius.kep.desain,Character

& import kotlinx.coroutines.flow. Flow

7

L]

class Characterflepository(
9 private val lacal: CharacterlocalDataSource,
19 private val network: CharacterfietworkDataSource,
{

1 )

12

12 val allCharacters: FlowsListolharacters»

14 geti] = local.all

1%

15 suspend fun fetchi}: Result<linit> {

17 retarn network.alll). foldlonSuccess = {

18 it.forfach { network -»

15 lacal. insert(network. asDomainModeli] h
2% ]

1 Result.success(Unit)

3 }. enfailure =

23 Result. failurelit)

24 3

25 }

%

7 suspend fum findById{id: Long): Result<Character= {
% return local.find(id).foldl

3 anSuccess =

ELl Result.successiit)

n .

32 onfailure = {

33 network. find(id). fold(

34 ensuccess = { networkCharacter ==
s wal chi ter = acter 0
% local. insert{character)

You can configure coverage limits in your projects using Kover
by defining custom rules. For example:

Chapter 5 - Testing 107



koverReport {
verify {
rule("Basic Line Coverage") {
isEnabled = true

bound {
minValue = 80 // Minimum coverage percentage
maxValue = 100 // Maximum coverage

percentage (optional)
metric = MetricType.LINE
aggregation =
AggregationType.COVERED_PERCENTAGE
¥
¥

rule("Branch Coverage") {
isEnabled = true
bound {

minValue = 70 // Minimum coverage percentage
for branches

metric = MetricType.BRANCH

Although Kover is in Alpha version and does not yet
support Kotlin Native, it is useful for validating our shared
code.

Chapter 5 - Testing 108



Best Practices for Testing in Kotlin
Multiplatform

To ensure effective testing in Kotlin Multiplatform, we can
follow these software development best practices:

+ Write tests from the start: Beginning with tests early in
development helps detect problems early and builds a solid
testing foundation.

« Automate testing: Automation ensures consistent execution
and minimizes human error.

» Use parameterized tests: These tests allow evaluation of
multiple data sets with a single test case, improving
maintainability. For this we can use Kotest.

+ Separate tests from implementations: Keeping test code
separate from production code improves organization and

facilitates future changes.

Chapter 5 - Testing 109



Rules for Using Tests in Multiplatform Projects

When implementing tests in Kotlin  Multiplatform
applications, consider these important guidelines:

+ For common code, use only multiplatform libraries like
kotlin.test. Add dependencies to the commonTest set.

« The Asserter type from kotlin.test should be used indirectly.
Although the instance is visible, avoid using it directly in
tests.

« Stick to the testing library API. The compiler and IDE will
help you avoid framework-specific features.

+ When using commonTest, run your tests with each planned
framework to verify correct environment setup.

« For platform-specific code, take advantage of the
framework's native features, including annotations and
extensions.

» Tests can be run from the IDE or through Gradle tasks.

« Test execution automatically generates HTML reports.

GitHub - santimattius/kmp-for-mobile-native-developers

at unit_and_integration_testing
KMP for Mobile Native Developers

0

santimattius/kmp-for-
mobile-native-developers

Chapter 5 - Testing 110


https://github.com/santimattius/kmp-for-mobile-native-developers/tree/unit_and_integration_testing
https://github.com/santimattius/kmp-for-mobile-native-developers/tree/unit_and_integration_testing

Chapter 6: Using Native
Libraries in Kotlin Multiplatform

[ |

VM classfiles Mative executables

111



Chapter 6: Using Native Libraries in Kotlin
Multiplatform

The adoption of Kotlin Multiplatform represents a strategic
step towards more coherent cross-platform development. This
technology allows sharing code and business logic, reducing
work duplication and improving consistency between
applications. When starting projects with KMP for Android and
10S, a practical approach is to adapt and integrate existing
native solutions into the KMP module, rather than rewriting
everything from scratch. This strategy allows us to leverage both
KMP functionalities and platform-specific code. In this section,
we'll explore how to extend the Bugsnag SDK for use from
KMP modules, both in Android and 10S. We'll start with the
integration of existing native SDKs, focusing on avoiding

unnecessary rewrites.

How do we include Android or iOS specific code in a KMP
module?

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 112



Using Android Dependencies in KMP

To add Android-specific dependencies to a Kotlin Multiplatform
module, the process is identical to traditional Android projects.
We just need to add the dependency in the Android source set
within the build.gradle(.kts) file in the shared directory. In this
example, we'll implement Bugsnag and Android Startup, two
platform-exclusive dependencies for Android.

kotlin {
sourcesetsq{
commonMain.dependenciesq{
// common dependencies

+
androidMain.dependencies {
api(libs.bugsnag.android)

implementation(libs.androidx.startup.runtime)
}.

h
h

Once these dependencies are configured, we can use them within
the Android sourceset.

Next, we'll explore the configuration of 1OS-specific
dependencies. Then we'll return to the implementation after
having the dependencies configured on both platforms.

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 113



How to Use iOS Dependencies in KMP

Apple SDK dependencies like Foundation or Core Bluetooth are
precompiled in Kotlin Multiplatform projects and require no
additional configuration. You can reuse libraries and frameworks
from the 10S ecosystem in your iOS sourcesets. Kotlin is
compatible with Objective-C and Swift dependencies, as long as
they expose their APIs to Objective-C using the (@objc attribute.
However, Swift-only dependencies are not yet supported.
CocoaPods integration has the same limitation: it doesn't support
Swift-only pods. To manage i10S dependencies in Kotlin
Multiplatform projects, we recommend using CocoaPods. You
should only manage dependencies manually if you need to
customize the interoperability process or have a specific reason to
do so. In our case, we'll use CocoaPods. To begin, we need to
configure the CocoaPods plugin in our KMP project:

[versions]
kotlin = "your-kotlin-version"

[plugins]

cocoaPods = { id =
"org.jetbrains.kotlin.native.cocoapods", version.ref =
"kotlin" }

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 114


https://kotlinlang.org/docs/multiplatform-ios-dependencies.html#with-cocoapods
https://kotlinlang.org/docs/multiplatform-ios-dependencies.html#without-cocoapods
https://kotlinlang.org/docs/multiplatform-ios-dependencies.html#with-cocoapods
https://kotlinlang.org/docs/multiplatform-ios-dependencies.html#without-cocoapods

Next, we'll apply the CocoaPods plugin in both the root
project and the shared module.

//root build.gradle.kts
plugins {
alias(libs.plugins.androidApplication) apply false
alias(libs.plugins.androidLibrary) apply false
alias(libs.plugins.kotlinMultiplatform) apply false
alias(libs.plugins.jetbrainsKotlinAndroid) apply
false
alias(libs.plugins.cocoaPods) apply false

hy

//shared module build.gradle.kts

plugins {
alias(libs.plugins.kotlinMultiplatform)
alias(libs.plugins.cocoaPods)
alias(libs.plugins.androidLibrary)

With the CocoaPods plugin installed, we can configure our
shared module as a pod and define the necessary dependencies.
For this example, we'll use Bugsnag as a native library.

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 115



kotlin{
cocoapods {

version = "1.0"
summary = "Some description for a Kotlin/Native
module"
homepage = "Link to a Kotlin/Native module homepage"
name = "Shared"
ios.deploymentTarget = "14.0"
framework {
baseName = "Shared"
isStatic = false
¥
pod("Bugsnag"){
version = "6.28.0"
¥
¥
}

Now that we have configured the dependencies for both
platforms, let's see how to reuse these native APIs through Kotlin
Multiplatform.

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 116



Expect/Actual

Kotlin provides an elegant mechanism to access platform-
specific APIs while developing common logic: expect and actual
declarations. The mechanism is simple: the common source set
of a multiplatform module defines an expect declaration, and
each platform source set provides its corresponding actual
declaration. The compiler verifies that each declaration marked
with the expect keyword in the common sources has its
corresponding declaration marked with actual in all target
platforms. This system works with most Kotlin declarations:
functions, classes, interfaces, enums, properties, and
annotations. In this section, we'll focus on using expect/actual

functions and properties.

androidMain common iosMain

Kotlin/JVM commeon Kotlin Kotlin/Mative

fun randomUUID: String()

java.util.+ import platform.Foundation.NSUUTID
] n randomUUID() = tual randoalUI0L] String =
URI0, randomUUIDC) . toString () NSUUTD() . WIDString()

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 117


https://kotlinlang.org/docs/multiplatform-expect-actual.html
https://kotlinlang.org/docs/multiplatform-expect-actual.html
https://kotlinlang.org/docs/multiplatform-expect-actual.html
https://kotlinlang.org/docs/multiplatform-expect-actual.html

Now let's look at the practical application of this concept using
the Bugsnag API as an example.

Kotlin Multiplatform Module

B I v T g SRR S S S S S S S S A
i '
i '
i '
i . '
androidMain commonMain i i '
: iosMain i
' '
' '
'
; I 1
e e e e = D N T L T | A 4

1t

L ¥
v
actual typealias Configuration = BugsnagConfiguration expect class Configuration

acial typealias Configuration = BugsnagConliguration

actual typealias TrackableException = Throwable - expect class TrackableException e
actual typealias TrackableException = NSException  |=—

actual class PlatformTracker |-
expect class PlatormTracker la— actual class PlatformTracker

The diagram above shows the general concept of our
implementation. Let's now look at the code in detail. In
commonMain, we'll define the expect declarations for our API
functions, ensuring consistency across platforms. Bugsnag
represents an ideal case, as it maintains consistent nomenclature
in its APIs for both Android and 10S, from method signatures to

entity structures.

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 118



// bugsnag.common.kt
package com.santimattius.kmp.playground

//SDK configurations

expect class Configuration

// Information track

expect class TrackableException

object Bugsnag {
private val provider: PlatformTracker = PlatformTracker()

fun initialize(config: Configuration) {
provider.initialize(config)

fun track(exception: TrackableException) {
provider.track(exception)

internal expect class PlatformTracker(){
fun initialize(config: Configuration)
fun track(exception: TrackableException)

Let's look at the Android implementation.

In the androidMain sourceset, we'll implement concrete
versions of the classes defined in the shared code. For the
entities Configuration and TrackableException, we'll use
typealias as a specific solution. Let's look at this

implementation in detail.

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 119


https://kotlinlang.org/docs/type-aliases.html
https://kotlinlang.org/docs/type-aliases.html
https://kotlinlang.org/docs/type-aliases.html

package com.santimattius.kmp.playground

import com.bugsnag.android.Bugsnag
import com.bugsnag.android.Configuration as
BugsnagConfiguration

actual typealias Configuration = BugsnagConfiguration
actual typealias TrackableException = Throwable

internal actual class PlatformTracker {
actual fun initialize(config: Configuration) {
val context = applicationContext ?: run {
// TODO: add logging later
return

y

Bugsnag.start(context, config)

actual fun track(exception: TrackableException) {
Bugsnag.notify(exception)

As we can observe in the imports, the typealias acts as direct

references to the native API entities.
import com.bugsnag.android.Bugsnag

import com.bugsnag.android.Configuration as BugsnagConfiguration

This is where we directly use Android dependencies.

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 120



How can we get the Android Context in KMP?

Among the Android-specific dependencies we defined earlier,
we find Android Startup. Kotlin Multiplatform's flexibility to
implement platform-specific code allows us to apply an elegant
solution: Bugsnag needs Android's applicationContext to work
during application startup. Through Android Startup, we can
obtain this context and, if desired, initialize our library. The
solution involves implementing an Android Startup Initializer

to capture the applicationContext.

int ernal var applicationContext: Context? = null
private set

class ContextInitializer: Initializer<Unit> {
override fun create(context: Context) {
applicationContext = context.applicationContext

override fun dependencies(): List<Class<out
Initializer<*>>> {
return emptyList()

After defining the initializer, we need to register it in the
AndroidManifest. To do this, we'll first create this file in our

androidMain directory.

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 121


https://developer.android.com/topic/libraries/app-startup

[z shared
build
Casre
[z androidMain [main]
[T kotlin
[E] com.santimattius.kmp.playground
[£ bugsnag.android.kt
[Z Contextlnitializer.kt
[£ Platform.android .kt
AndroidManifest.xmi
[ eommonMain
+ [giosMain
&7 build.gradie. kts
= Shared.podspec

In the AndroidManifest.xml file, we need to add the following

configuration:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools">

<application>
<provider
android:name="androidx.startup.InitializationProvider"
android:avthorities="${applicationId}.androidx-startup"
android:exported="false"
tools:node="merge">
<meta-data

android:name="com.santimattius.kmp.playground.ContextInitializer"
android:value="androidx.startup" />
</provider>
</application>

</manifest>

To use Bugsnag in Android, we just need to reference our
Bugsnag object from the application. Let's see an example:

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 122



import android.app.Application
import com.santimattius.kmp.playground.Bugsnag
import com.santimattius.kmp.playground.Configuration

class MainApplication : Application() {

override fun onCreate() {
super.onCreate()
// Initialization
Bugsnag.initialize(config = Configuration.load(this))
// Send test exception
Bugsnag.track(exception = Throwable(message = "This is

a test!!"))
}

Thanks to the alias definitions, we can use native APIs directly
from our Kotlin Multiplatform module, as shown in our import

declarations.

Next, we'll look at the i10OS implementation.

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 123



package com.santimattius.kmp.playground

import cocoapods.Bugsnag.Bugsnag

import cocoapods.Bugsnag.BugsnagConfiguration
import kotlinx.cinterop.ExperimentalForeignApi
import platform.Foundation.NSException

@0ptIn(ExperimentalForeignApi::class)
actual typealias Configuration = BugsnagConfiguration
actual typealias TrackableException = NSException

@0ptIn(ExperimentalForeignApi::class)
internal actual class PlatformTracker {
actual fun initialize(config: Configuration) {
Bugsnag.startWithConfiguration(config)

actual fun track(exception: TrackableException) {
Bugsnag.notify(exception)

Looking at the imports, we can see that our definitions use

native APIs provided by both the iOS platform and Bugsnag.

import cocoapods.Bugsnag.Bugsnag

import cocoapods.Bugsnag.BugsnagConfiguration
import kotlinx.cinterop.ExperimentalForeignApi
import platform.Foundation.NSException

Chapter 6 - Using Native Libraries in Kotlin Multiplatform

124



import SwiftUI
import Shared
import Bugsnag

@main
struct i0SApp: App {

init() {
// Initialization
let config = BugsnagConfiguration.loadConfig()
config.appVersion = "1.0.0-alpha"

Bugsnag.shared.initialize(config: config)
// Send test exception
let exception =
NSException(name:NSExceptionName(rawValue: "NamedException"),
reason:"Something happened",
userInfo:nil)
Bugsnag.shared.track(exception: exception)

var body: some Scene {
WindowGroup {
ContentView()
}
}
¥

Just like in Android, we're using the platform's native types, but
this time accessing them through our Shared module.
Our Kotlin Multiplatform solution is ready! 4:

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 125



Can we use it from a Kotlin Multiplatform
module?

Can we use our Bugsnag SDK adaptation from a Kotlin
Multiplatform module? The answer is yes. In fact, making existing
functionality accessible from our KMP modules is one of the
main benefits driving the adoption of this technology. To better
understand how it works, let's analyze a practical example with a
repository.

class CrashRepository {

private val coroutineScope =
CoroutineScope(Dispatchers.Default)

suspend fun crash() {
val handler = CoroutineExceptionHandler { _, exception -

println("CoroutineExceptionHandler got Sexception")
// send log to bugsnag
Bugsnag.track(exception.asTrackableException())

val job = coroutineScope.launch(handler) { // root
coroutine, running in GlobalScope
throw AssertionError()

val deferred = coroutineScope.async(handler) { // also
root, but async instead of launch
throw ArithmeticException() // Nothing will be
printed, relying on user to call deferred.await()

F

joinAll(job, deferred)

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 126



This is a deliberate example of how to generate an exception
& . Our goal is to capture this exception using
CoroutineExceptionHandler and report it to Bugsnag through
our SDK adaptation. For this, we need to transform the

exception to the TrackableException type.

While we could have directly used the Throwable type in the track
function signature since it's native to Kotlin, we chose to define the
TrackableException type to achieve a clearer and more expressive
API.

To implement this conversion, we create a Throwable extension

function with platform-specific implementations.

//bugsnag.common.kt
expect fun Throwable.asTrackableException():
TrackableException

//bugsnag.android.kt

actual fun Throwable.asTrackableException() = this

//bugsnag.ios.kt
actual fun Throwable.asTrackableException()
NSException.exceptionWithName (
name = this::class.simpleName,
reason = message ?: toString(),
userInfo = null

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 127



In Android, since TrackableException is an alias for Throwable,
the extension simply returns the original exception. In i0S, we
create a new NSException that encapsulates the error
information. With this complete implementation, let's analyze

its advantages and disadvantages.

Pros and Cons

Pros

+ Allows reusing existing solutions for MVP in KMP
Maintains developer experience, especially for those
coming from Android, by preserving familiar API
definitions Facilitates early adoption of KMP Promotes

+ robust and synchronized design between native solutions

Cons

» APIs may have inconsistent designs across platforms

+ Increases maintenance cost by adding a new technology
stack

» Changes in native APIs require adjustments in KMP
adaptation

» Cross-platform adaptation presents specific challenges: in
Android, Java-

+ Kotlin interoperability, and in i0OS, converting Swift code
not compatible with

» Objective-C

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 128



In my opinion, these solutions should be limited to specific cases,
such as external integrations without native KMP support. It's
important to evaluate the cost of rewriting these modules.
Although interoperability works in both directions (we can use
native dependencies in KMP and vice versa), it's better to avoid
duplicate solutions. Software development experience has taught

us the problems caused by code duplication.

GitHub - santimattius/kmp-native-api- santimattius/kmp-native-
api-playground

playground S

© https://github.com/santimattius/kmp-native-api-

playground ' o wo v "

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 129


https://github.com/santimattius/kmp-native-api-playground
https://github.com/santimattius/kmp-native-api-playground
https://github.com/santimattius/kmp-native-api-playground

Chapter 7: Libraries

Native Code

(8

Shared Code .
View

Business logic
and core

i0sS Android
specific APls specific APls

View

130



Chapter 7: Libraries

In Kotlin Multiplatform application development, it's essential
to have a robust set of libraries that facilitate common tasks such
as networking, data storage, and state management. These
libraries are specifically designed to work consistently across all
platforms supported by KMP, allowing developers to maintain a
single codebase while leveraging native capabilities of each
platform. Below, we'll explore some of the most popular and
proven libraries in the KMP community, organized by categories
according to their main functionality. These tools have been
selected based on their maturity, active support, and adoption in
real projects.

Networking

Networking libraries are fundamental for creating applications
that work on both Android and iOS using Kotlin Multiplatform.
These libraries allow both platforms to communicate with the
Internet using the same code. Let's look at the best available
libraries for making network connections in Kotlin
Multiplatform:

Chapter 7 - Libraries 131



Ktor

Ktor is an open-source framework for creating web and
server applications in Kotlin. Ktor Client is a component of
Ktor wused to make HTTP requests from a Kotlin
multiplatform application. With Ktor Client, you can make
HTTP requests from your shared code across compatible
platforms. Ktor Client provides a declarative and fluid API
for making HTTP requests simply and efficiently, making it
suitable for developing multiplatform applications that need
to interact with web services. You can use Ktor Client to
make GET, POST, PUT, DELETE, and other HTTP
operations, as well as easily handle headers, parameters, and
request and response data.

internal fun apiClient(baseUrl: String) = HttpClient {

install(ContentNegotiation) {
json(Json {
prettyPrint = true
isLenient = true
ignoreUnknownKeys = true
1D
¥
install(Logging) {
logger = Logger.DEFAULT
level = LoglLevel.ALL

defaultRequest {
url(baseUrl)
contentType(ContentType.Application.Json)

Chapter 7 - Libraries 13

S]
(\)



//using ktor client

class KtorRemoteMoviesDataSource(
private val client: HttpClient,

) : RemoteMoviesDataSource {

override suspend fun getMovies():
Result<List<MovieDto>> = runCatching {
// invoke service
val response = client.get("movie/popular")
val result = response.body<MovieResponse>()
result.results

For more information on how to use Ktor in your Kotlin
Multiplatform projects, you can check the official Ktor
documentation.

Creating a cross-platform mobile application | Ktor [SEEIE
The Ktor HTTP client can be used in multiplatform projects. In this K
tutorial, we'll create a simple Kotlin Multiplatform Mobile ton o
o . . For building asynchronous
application, which sends a request and receives a response body as servers and clients in Kotlin

plain HTML text.

‘@, https://ktor.io/docs/getting-started-ktor-client-multiplatform-mobile.html#code

Chapter 7 - Libraries 133


https://ktor.io/docs/getting-started-ktor-client-multiplatform-mobile.html
https://ktor.io/docs/getting-started-ktor-client-multiplatform-mobile.html
https://ktor.io/docs/getting-started-ktor-client-multiplatform-mobile.html
https://ktor.io/docs/getting-started-ktor-client-multiplatform-mobile.html
https://ktor.io/docs/getting-started-ktor-client-multiplatform-mobile.html#code
https://ktor.io/docs/getting-started-ktor-client-multiplatform-mobile.html#code
https://ktor.io/docs/getting-started-ktor-client-multiplatform-mobile.html#code
https://ktor.io/docs/getting-started-ktor-client-multiplatform-mobile.html#code

Ktorfit

Ktorfit is a HTTP client/Kotlin Symbol Processor for Kotlin
Multiplatform i Android, 10S, Js, Jvm, Linux) using KSP and
Ktor clients inspired by Retrofit.
class ServiceCreator(baseUrl: String) {

private val client = HttpClient {

install(ContentNegotiation) {
json(Jdson { isLenient = true; ignoreUnknownKeys = true

i)
}
}
private val ktorfit = Ktorfit.Builder()
.baseUrl(baseUrl)
.httpClient(client)
.build()
fun createPictureService() = ktorfit.create<PictureService>()
}

interface PictureService {

@GET("random")
suspend fun random(): Picture

}

For more information about Ktorfit and how to use it in your
projects, you can check the official Ktorfit documentation
https://foso.github.io/Ktorfit/

For a complete example, you can check out this Github
repository: https:/github.com/santimattius/kmp-networking

Chapter 7 - Libraries 134


https://github.com/google/ksp
https://ktor.io/docs/getting-started-ktor-client.html
https://square.github.io/retrofit/
https://github.com/google/ksp
https://ktor.io/docs/getting-started-ktor-client.html
https://square.github.io/retrofit/
https://foso.github.io/Ktorfit/
https://foso.github.io/Ktorfit/
https://foso.github.io/Ktorfit/
https://foso.github.io/Ktorfit/

Storage

Mobile applications need to store information on the device.
Kotlin Multiplatform makes this easier by providing tools
that work the same way on both Android and 10S. Let's look
at the best available tools for storing data in Kotlin

Multiplatform, starting with how to handle user preferences.

Datastore

Jetpack Datastore is a data storage solution that allows you to
store key-value pairs or objects written with protocol buffers.
Datastore uses Kotlin coroutines and Flow to store data
asynchronously, consistently, and transactionally. If you
currently use SharedPreferences to store data, consider
migrating to Datastore.

Chapter 7 - Libraries 13

W
()]


https://developers.google.com/protocol-buffers?hl=es-419
https://developers.google.com/protocol-buffers?hl=es-419
https://developer.android.com/reference/kotlin/android/content/SharedPreferences?hl=es-419
https://developer.android.com/reference/kotlin/android/content/SharedPreferences?hl=es-419
https://developer.android.com/reference/kotlin/android/content/SharedPreferences?hl=es-419

import androidx.datastore.core.DataStore

import
androidx.datastore.preferences.core.PreferenceDataStoreFactory
import androidx.datastore.preferences.core.Preferences

import kotlinx.atomicfu.locks.SynchronizedObject

import kotlinx.atomicfu.locks.synchronized

import okio.Path.Companion.toPath

private lateinit var dataStore: DataStore<Preferences>
private val lock = SynchronizedObject()

fun getDataStore(producePath: () -> String): DataStore<Preferences>

synchronized(lock) {
if (::dataStore.isInitialized) {
dataStore
} else {
PreferenceDataStoreFactory.createWithPath(produceFile =
{ producePath().toPath() })
.also { dataStore = it }

internal const val dataStoreFileName = "counter.preferences_pb"

For a complete example of using DataStore in KMP, you can

check out the following link:

preferences

GitHub - santimattius/kmp-shared-preferences at santimattius/kmp-shared- ﬂ
feature/data-store: Example using Multiplaform

Settings. @ i o0 =

Chapter 7 - Libraries 136


https://github.com/santimattius/kmp-shared-preferences/tree/feature/data-store
https://github.com/santimattius/kmp-shared-preferences/tree/feature/data-store
https://github.com/santimattius/kmp-shared-preferences/tree/feature/data-store
https://github.com/santimattius/kmp-shared-preferences/tree/feature/data-store

Multiplatform Settings
This is a Kotlin library for Multiplatform apps that enables
common code to persist key-value data.

import com.russhwolf.settings.Settings

import
com.santimattius.kmp.skeleton.core.preferences.IntSettingConf
ig

import kotlinx.coroutines.flow.Flow

//commonMain
expect fun provideSettings(): Settings

class SettingsRepository(
settings: Settings = provideSettings(),
) {

private val _counter = IntSettingConfig(settings,
"counter", 0)
val counter: Flow<Int> = _counter.value

fun increment() {
val value = _counter.get().toInt() + 1
_counter.set("Svalue")

fun decrease() {
val value = _counter.get().toInt() - 1
if (value < 0) {
_counter.set("0")
} else {
_counter.set("Svalue")

Chapter 7 - Libraries 137



Initialization in Android/iOS

//androidMain

import androidx.preference.PreferenceManager

import android.content.SharedPreferences

import com.russhwolf.settings.Settings

import com.russhwolf.settings.SharedPreferencesSettings

actual fun provideSettings(context:Context): Settings {
val preferences =

PreferenceManager.getDefaultSharedPreferences(context)
return SharedPreferencesSettings(sharedPref)

//iosMain

import com.russhwolf.settings.NSUserDefaultsSettings
import com.russhwolf.settings.Settings

import platform.Foundation.NSUserDefaults

actual fun provideSettings(): Settings{
return
NSUserDefaultsSettings(NSUserDefaults.standardUserDefaults)

}

As we can see, Multiplatform Settings uses the preferences
implementations of each platform.

For more detailed information and documentation about
Multiplatform Settings, you can check the official documentation
on GitHub.

GitHub - russhwolf/multiplatform-settings: A Kotlin o
Multiplatform library for saving simple key-value data MUltlpk?t1
Setting

© https://github.com/russhwolf/multiplatform-settings
For a complete example, you can check out the following Github
repository:
GitHub - santimattius/kmp-shared-preferences: e ﬂ

Example using Multiplaform Settings
o https://github.com/santimattius/kmp-shared-preferences 1 o uww ve &

Chapter 7 - Libraries 138


https://github.com/santimattius/kmp-shared-preferences/tree/main
https://github.com/santimattius/kmp-shared-preferences/tree/main
https://github.com/russhwolf/multiplatform-settings/tree/main
https://github.com/russhwolf/multiplatform-settings/tree/main
https://github.com/russhwolf/multiplatform-settings/tree/main

KStore

A tiny Kotlin multiplatform library that assists in saving and
restoring objects to and from disk using kotlinx.coroutines,
kotlinx.serialisation and okio. Inspired by RxStore.

Features
. Read-write locks; with a mutex FIFO lock

« [ In-memory caching; read once from disk and reuse

« 3 Default values; no file? no problem!

« & Migration support; moving shop? take your data with
you

« EIMultiplatform!

GitHub - xxfast/KStore: A tiny Kotlin multiplatform library that assists in
saving and restoring objects to and from disk using kotlinx.coroutine

https://github.com/xxfast/KStore

Chapter 7 - Libraries 139


https://github.com/Gridstone/RxStore
https://github.com/Gridstone/RxStore
https://github.com/xxfast/KStore
https://github.com/xxfast/KStore
https://github.com/xxfast/KStore

Database
SQLDelight

SQLDelight generates typesafe Kotlin APIs from your SQL
statements. It verifies your schema, statements, and migrations at
compile-time and provides IDE features like autocomplete and
refactoring which make writing and maintaining SQL simple.
CREATE TABLE Favorite (
resourceId INTEGER PRIMARY KEY NOT NULL,
title TEXT NOT NULL, overview TEXT NOT

NULL, imageUrl TEXT NOT NULL, type TEXT
NOT NULL

);

selectAllFavorite:
SELECT * FROM Favorite;

The SQLDelight plugin generates the necessary classes to interact
with the database. In this example, AppDatabase and
databaseQueries are generated by SQLDelight.

Chapter 7 - Libraries 140



class SQLDelightFavoriteLocalDataSource(

db: AppDatabase,
private val dispatcher: CoroutineDispatcher =

Dispatchers.IO,
) : FavoritelLocalDataSource {

private val databaseQueries = db.appDatabaseQueries

override val all: Flow<List<Favorite>>
get() = databaseQueries
.selectAllFavorite()
.asFlow()
.mapToList(dispatcher)

+

For more information about SQLDelight and how to use it in
your projects, you can check the official SQLDelight
documentation https://cashapp.github.io/sqldelight/2.0.1/.

You can also find practical examples in the accompanying

example.

Room

Room is Android's official database library, and now it can also
be used in Kotlin Multiplatform projects. From now on, the
same database you create for the Android target will be

available across all targets.

Chapter 7 - Libraries 141


https://cashapp.github.io/sqldelight/2.0.1/
https://cashapp.github.io/sqldelight/2.0.1/
https://cashapp.github.io/sqldelight/2.0.1/
https://cashapp.github.io/sqldelight/2.0.1/

// shared/src/commonMain/kotlin/Database.kt

@Database(entities = [TodoEntity::class], version = 1)
@ConstructedBy(AppDatabaseConstructor::class) abstract
class AppDatabase : RoomDatabase() {

abstract fun getDao(): TodoDao

F

// The Room compiler generates the “actual’ implementations.
@Suppress ("NO_ACTUAL_FOR_EXPECT")

expect object AppDatabaseConstructor :
RoomDatabaseConstructor<AppDatabase> {

override fun initialize(): AppDatabase

F

@Dao
interface TodoDao {

@Insert
suspend fun insert(item: TodoEntity)

@Query("SELECT count(*) FROM TodoEntity")
suspend fun count(): Int

@Query("SELECT * FROM TodoEntity")
fun getAll1AsFlow(): Flow<List<TodoEntity>>

@Entity

data class TodoEntity(
@PrimaryKey(autoGenerate = true) val id: Long = O,
val title: String,
val content: String

)
For more detailed information about Room in Kotlin

Multiplatform, you can check the official documentation at the
following link

Room (Kotlin Multiplatform) | Android Developers
The Room persistence library provides an abstraction layer over SQLite to allow for D ==
evelopers amé

more robust database access while harnessing the full power of SQLite.

st https://developer.android.com/kotlin/multiplatform/room

Chapter 7 - Libraries 142


https://developer.android.com/kotlin/multiplatform/room
https://developer.android.com/kotlin/multiplatform/room
https://developer.android.com/kotlin/multiplatform/room
https://developer.android.com/kotlin/multiplatform/room

Multiplatform Jetpack Libraries

Google officially supports Kotlin Multiplatform for sharing
business logic between 10S and Android. Many Jetpack libraries
have already been adapted to take advantage of KMP.

The following Jetpack libraries are compatible with KMP:

« Annotations
o https://developer.android.com/jetpack/androidx/
releases/annotation
Collection
o https://developer.android.com/jetpack/androidx/
releases/collection
DataStore
o https://developer.android.com/jetpack/androidx/
releases/datastore
Lifecycle
o https://developer.android.com/jetpack/androidx/

releases/lifecycle

+ Paging
o https://developer.android.com/jetpack/androidx/
releases/paging
« Room
o https://developer.android.com/jetpack/androidx/
releases/room
SQLite
o https://developer.android.com/jetpack/androidx/
releases/sqlite

Chapter 7 - Libraries 143


https://android-developers.googleblog.com/2024/05/android-support-for-kotlin-multiplatform-to-share-business-logic-across-mobile-web-server-desktop.html

Android Support for Kotlin Multiplatform to Share
Business Logic Across Mobile, Web, Server, and
Desktop s
https://android-developers.googleblog.com/2024/05/android-
support-for-kotlin-multiplatform-to-share-business-logic-across-
mobile-web-server-desktop.html

Summary

These are some of the libraries that help us address the challenge
of delegating platform-specific implementations. They allow our
code to be fully multiplatform, giving us the flexibility to choose
which business logic to share while keeping critical aspects like
the user interface separate. If you want to discover other
libraries with Kotlin Multiplatform support, you can visit the
following Github repository or the Jetbrains website where you

can find official and community libraries.

« Klibs.io: https:/klibs.io/
« Awesome Kotlin Multiplatform: https://github.com/
terrakok/kmp-awesome

Chapter 7 - Libraries 144


https://android-developers.googleblog.com/2024/05/android-support-for-kotlin-multiplatform-to-share-business-logic-across-mobile-web-server-desktop.html
https://android-developers.googleblog.com/2024/05/android-support-for-kotlin-multiplatform-to-share-business-logic-across-mobile-web-server-desktop.html
https://android-developers.googleblog.com/2024/05/android-support-for-kotlin-multiplatform-to-share-business-logic-across-mobile-web-server-desktop.html
https://android-developers.googleblog.com/2024/05/android-support-for-kotlin-multiplatform-to-share-business-logic-across-mobile-web-server-desktop.html
https://android-developers.googleblog.com/2024/05/android-support-for-kotlin-multiplatform-to-share-business-logic-across-mobile-web-server-desktop.html

Chapter 8: Essential Tools and
Plugins for Kotlin
Multiplatform Development

145



Chapter 8: Essential Tools and Plugins for
Kotlin Multiplatform Development

This chapter provides a concise overview of tools and plugins
that enhance Kotlin Multiplatform application development.
We'll explore essential tools like SKIE, KMMBridge, Xcode
Kotlin, KMM Plugin, Dokka, and DeteKt. Each section
examines their key features, development tool integrations,
and how they improve the developer experience. This guide
helps developers understand and navigate the Kotlin
Multiplatform tooling ecosystem.

KDoctor

KDoctor ensures that all required components are properly
installed and ready for use. If something is missed or not
configured, KDoctor highlights the problem and suggests how to
fix the problem.

KDoctor runs the following diagnostics:

» System - checks an operating system version

« JDK: checks that JDK installation and JAVA_HOME
setting

« Android Studio - checks Android Studio installation, Kotlin
and Kotlin Multiplatform Mobile plugins

. Xcode - checks Xcode installation and setup

« CocoaPods - checks ruby environment and cocoapods gem
installation

Chapter 8 - Essential Tools and Plugins for KMP Development 146


https://kotlinlang.org/docs/kmm-setup.html

Extra diagnostics:

« Synthetic generated project - downloads and builds project

from https://github.com/Kotlin/kdoctor.
« Local Gradle Project - checks a user's project in the current

directory

sa go.mattiouda@l92 ~ % kdoctor
Environment diognose (to see all details, use -v option):
ation te

Android Studio
Xcode
CocoaPods

Conclusion:
ur operati tem is ready for Kotlin Multiplatform Mobile Development!
santiago.mattiaoud ~ %

- %

GitHub - Kotlin/kdoctor: Environment analysis i in/kdoctor

tool Environment analysis tool. Contribute to .
Kotlin/kdoctor development by creating an

account on GitHub.

) https://github.com/Kotlin/kdoctor

Chapter 8 - Essential Tools and Plugins for KMP Development 147


https://github.com/Kotlin/kdoctor/tree/template
https://github.com/Kotlin/kdoctor/tree/template

SKIE

One of the main disadvantages of Kotlin Multiplatform is the
lack of direct interaction with Swift. Without this, Swift can
only communicate with Kotlin indirectly, through Objective-
C. This approach, although functional, has many limitations
and causes Kotlin to lose support for many of its language
features. SKIE 1is a specialized plugin of the Kotlin native
compiler that recovers support for some of these features by
modifying the Xcode framework produced by the Kotlin
compiler. Thanks to this, it is not necessary to change the
way you distribute and consume your Kotlin Multiplatform
frameworks. Developed by TouchLab, SKIE is designed to
facilitate the development of projects with Kotlin
Multiplatform, focusing on improving interoperability and
the safe export of interfaces between different platforms.
Below, its features oriented to Kotlin Multiplatform are
described.

Chapter 8 - Essential Tools and Plugins for KMP Development 148



SKIE Features

Safe Interface Exportation: Verifies type compatibility
between platforms and ensures multi-platform
interoperability.

Export Process Automation: Automatically generates the
necessary code and simplifies configuration with a Gradle
DSL.

Multi-platform Compatibility: Compatible with all Kotlin
Multiplatform targets and integrates well with existing
tools.

Support and Extensibility: Provides comprehensive
documentation and allows extensions to adapt to project
needs.

Active Maintenance: TouchLab regularly updates SKIE and

has the backing of an active community.

SKIE is a powerful and essential tool for Kotlin Multiplatform

developers. It allows them to safely and efficiently export

interfaces between different platforms. With features that

automate the export process and ensure type compatibility, SKIE

significantly improves the development experience. In addition, it

facilitates the creation of robust and easy-to-maintain multi-

platform applications.

Chapter 8 - Essential Tools and Plugins for KMP Development

149



Next, we see an example of the use of Sealed Classes in Swift:

sealed class Status {
object Loading : Status()
data class Error(val message: String) : Status()
data class Success(val result: SomeData) : Status()

hy

Swift without SKIE:

func updateStatus(status: Status) {
switch status {
case _ as Status.Loading:
showLoading()
case let error as Status.Error:
showError(message: error.message)
case let success as Status.Success:
showResult(data: success.result)
default:
fatalError("Unknown status")
¥
}

Swift with SKIE

func updateStatus(status: Status) {

switch status {

case _ as Status.Loading:
showLoading()

case let error as Status.Error:
showError(message: error.message)

case let success as Status.Success:
showResult(data: success.result)

default:
fatalError("Unknown status")

hy

Chapter 8 - Essential Tools and Plugins for KMP Development 150



To see more features of SKIE, I leave its documentation below.

SKIE Intro | SKIE Welcome to the SKIE
documentation. Let's give your iOS developer
experience a boost, shall we?

@ https://skie.touchlab.co/intro

KMMBridge

KMMBridge is a Gradle tool that simplifies the publication of
Kotlin Multiplatform framework binaries for Xcode. It allows
publication on different backends and its use through
CocoaPods or Swift Package Manager.
Creates and publishes XCFramework zip files of your Kotlin
, modules
. Publishes on various online storage platforms
Configures and publishes versions for SPM and CocoaPods

for other developers

It offers a local development flow for SPM in addition to its
publication functionality.

It is aimed at those who need to publish Xcode frameworks from
Kotlin for i0S developers, useful for teams testing KMP,
needing modularization, or publishing SDKs.

Chapter 8 - Essential Tools and Plugins for KMP Development 151


https://skie.touchlab.co/intro
https://skie.touchlab.co/intro
https://skie.touchlab.co/intro
https://skie.touchlab.co/intro
https://skie.touchlab.co/intro

KMMBridge Intro | KMMBridge
KMMBridge is a set of Gradle tooling that facilitates publishing and

consuming pre-built Kotlin Multiplatform Xcode Framework

binaries.

ﬂ https://kmmbridge.touchlab.co/docs/

Xcode Kotlin

The xcode-kotlin plugin allows you to debug Kotlin code
running in an iOS application, directly from Xcode. This

provides a smoother development and integration experience for

108 developers using Kotlin shared code. In addition, it allows a

more accessible experience for large teams, where not all

members can directly edit the shared code.

> B KaMPKitios
> B Pods
~ [ Kotlin Debug
~ [ commonMain
~ [l kotlin
~ [l co
~ [ touchlab
~ il kampkit
Y| Applnfo.kt
Y| DatabaseHelp...
Y] Kain.kt
> [ ktor
* Il models
'| Platform.kt

Chapter 8 - Essential Tools and Plugins for KMP Development

152


https://kmmbridge.touchlab.co/docs/
https://kmmbridge.touchlab.co/docs/
https://kmmbridge.touchlab.co/docs/
https://kmmbridge.touchlab.co/docs/
https://kmmbridge.touchlab.co/docs/

TouchLab's Xcode Kotlin integrates Kotlin into Xcode
projects for 10S development, enhancing the experience of
developers using Kotlin Multiplatform. It allows native
integration of Kotlin code into Swift and Objective-C projects.

Its main features are:

Features

Integration with Xcode
» Direct support for Xcode: It enables the inclusion of
Kotlin code in Xcode projects, improving interoperability
with Swift and Objective-C.
» Compatibility with Xcode tools: Ensures that Xcode tools,
such as the debugger and compiler, work correctly with
Kotlin.

Ease of configuration
+ Simplified configuration: It offers predefined scripts and

configurations to integrate Kotlin into Xcode, minimizing
complexity and potential errors.

« Detailed documentation: Provides comprehensive guides for
setting up and using Kotlin in 10S projects.

Automatic generation of bindings
» Automatic bindings: Automatically creates the necessary
bindings to access Kotlin code from Swift and Objective-C,

avoiding the manual writing of bridge code.

Chapter 8 - Essential Tools and Plugins for KMP Development 153



Improvement of the developer experience
« Simplified workflow: By automating the integration of
Kotlin into Xcode.

Xcode Kotlin: Xcode support for Kotlin browsing and debugging
The xcode-kotlin plugin allows debugging of Kotlin code running in an iOS
application, directly from Xcode.

B https://touchlab.co/xcodekotlin

Chapter 8 - Essential Tools and Plugins for KMP Development 154


https://touchlab.co/xcodekotlin
https://touchlab.co/xcodekotlin
https://touchlab.co/xcodekotlin
https://touchlab.co/xcodekotlin

KMM Plugin

The KMM Plugin is an essential tool for developers using
Kotlin Multiplatform in Android Studio. This plugin offers
complete integration with Android Studio, thus making the
creation, compilation, and debugging of KMP projects easier.
With the KMM Plugin, developers can easily create Kotlin
Multiplatform projects and access all the features of Kotlin
Multiplatform directly from Android Studio. This includes the
ability to define shared modules, manage dependencies, and
perform unit tests on shared code, all within the familiar

Android Studio development environment.

Plugin Features
Integration with Android Studio
« Integrates with Android Studio providing tools for cross-
platform development.
. Facilitates the creation of KMP projects with automatic
wizards.

Advanced Development Tools
« Offers autocomplete and refactoring tools.
« Provides advanced navigation and code search.

Debugging and Testing
« Supports Kotlin code debugging on Android and 10S.

« Facilitates unit and integration testing for shared code.

Developer Experience

« Automates repetitive tasks of cross-platform development.
+ Provides clear and detailed error messages.

Chapter 8 - Essential Tools and Plugins for KMP Development 155



The KMM Plugin from JetBrains is an essential tool for Kotlin
Multiplatform developers seeking seamless integration between
Android and 10S. With features that simplify project setup and
significantly improve developer experience, this plugin allows
creating cross-platform applications, taking full advantage of
Android Studio and Kotlin capabilities.

Kotlin Multiplatform Mobile: IntelliJ IDEs Plugin —
| Marketplace .
The Kotlin Multiplatform Mobile plugin helps you

develop applications that work on both Android
and i0S. With the Kotlin Multiplatform Mobile
plugin for Android...

@ https:/plugins jetbrains.com/plugin/14936-kotlin-multiplatform-mobile

Kotlin Multiplatform Wizard

Kotlin Multiplatform Wizard is a tool from JetBrains designed
to simplify the creation of new Kotlin Multiplatform projects.
It has an intuitive user interface that guides developers through
the initial project setup.

Features

» Helps to set up the structure and dependencies of new Kotlin
Multiplatform projects.

+ Allows selecting the platforms (JVM, JS, Android, i0S, etc.)
for the project.

+ Kotlin Multiplatform Wizard generates the base code,
including configuration and sample code, saving time.

Chapter 8 - Essential Tools and Plugins for KMP Development 156


https://plugins.jetbrains.com/plugin/14936-kotlin-multiplatform-mobile
https://plugins.jetbrains.com/plugin/14936-kotlin-multiplatform-mobile
https://plugins.jetbrains.com/plugin/14936-kotlin-multiplatform-mobile
https://plugins.jetbrains.com/plugin/14936-kotlin-multiplatform-mobile
https://plugins.jetbrains.com/plugin/14936-kotlin-multiplatform-mobile
https://plugins.jetbrains.com/plugin/14936-kotlin-multiplatform-mobile
https://plugins.jetbrains.com/plugin/14936-kotlin-multiplatform-mobile

Kotlin Multiplatform Wizard is an excellent tool for any developer
looking for a quick and easy way to start with Kotlin
Multiplatform. With its focus on ease of use and customization, it
facilitates the creation of new projects, allowing developers to
focus on what really matters: writing high-quality code.

BK Kotlin Multiplatform Wizard

New Project Template Gallery 0]
KotlinProject

org.example project

W Android

With Compose Multiplatferm Ul framework based on Jetpack Compose

@ ios

Ul Implementation

@ Share Ul (with Compose Multiplatform Ul framewark) | 8eta

(O Do nat share UI (use anly Swiftu1)

m Desktop O

Al
i Web  wen O
g

In addition, on the website you will find a gallery of other
templates with different configurations. For example, you will
find one based on Amper that we will see later.

Kotlin Multiplatform Wizard | JetBrains
Create your first multiplatform project using the Kotlin Multiplatform

wizard for Android, i0S, and Desktop, or use one of the pre-made

templates.

® https://kmp.jetbrains.com/

Chapter 8 - Essential Tools and Plugins for KMP Development 157


https://kmp.jetbrains.com/
https://kmp.jetbrains.com/
https://kmp.jetbrains.com/
https://kmp.jetbrains.com/
https://kmp.jetbrains.com/

Dokka: Generating Clear and Concise
Documentation

Documentation is essential in any software development project.
Dokka is a documentation generation tool specifically designed
for Kotlin projects, including Kotlin Multiplatform. Dokka
analyzes the source code and generates clear and concise
documentation in HTML, Markdown, or Javadoc formats. This
documentation describes the public API of a Kotlin
Multiplatform project, making it easier for developers to
understand how to use the different parts of the shared code. In
addition, it promotes good development practices by making the
documentation easily accessible for the entire team.

shared

Packages

........

Chapter 8 - Essential Tools and Plugins for KMP Development 158



Dokka Features

Automatic Documentation Generation

« Automatically generates documentation from KDoc
comments in Kotlin source code.

« Supports Kotlin Multiplatform projects, including modules
for JVM, JS and Native.

Flexible Configuration
« Integrates with Gradle, allowing documentation generation
to be configured from build.gradle.
« Offers advanced configurations to customize the format and

content of the documentation.

Output in Multiple Formats
« Generates documentation in several formats, including
HTML and Markdown.

« Can generate documentation in a format similar to Javadoc.

Integration with Build Tools
« Compatible with integration and continuous delivery (CI/
CD) systems.
« Integrates with IntelliJ IDEA and other JetBrains-based
IDEs.

Documentation Enrichment
+ Allows the inclusion of images, links and other external
resources in the documentation.
+ Can include code examples and snippets in the

documentation.

Chapter 8 - Essential Tools and Plugins for KMP Development 159



Optimization of the Developer Experience
+ Generates documentation with a clear and easy-to-navigate
structure.
« Supports the inclusion of annotations and comments in the
documentation.

Dokka, essential for Kotlin developers, supports clear and up-to-
date documentation of projects, including Kotlin Multiplatform.
It facilitates the generation of documentation, supports various
formats and integrates with build tools and CI/CD, improving
the quality and accessibility of code documentation. This benefits
the understanding and maintenance of projects, for individual
developers and teams.

Get started with Dokka | Kotlin
Below you can find simple instructions to help
you get started with Dokka.

Kotlin Docs,

[ https:/kotlinlang.org/docs/dokka-get-started html

Chapter 8 - Essential Tools and Plugins for KMP Development 160


https://kotlinlang.org/docs/dokka-get-started.html
https://kotlinlang.org/docs/dokka-get-started.html
https://kotlinlang.org/docs/dokka-get-started.html
https://kotlinlang.org/docs/dokka-get-started.html

DeteKt: Code Quality Improvement

Code quality is essential for the maintainability and scalability of
any software project. DeteKt is a static code analysis tool
designed to identify and correct common quality problems in
Kotlin projects. With DeteKt, developers can automatically
analyze their Kotlin Multiplatform code for errors,
redundancies, incorrect naming conventions, and other potential
problems. This helps ensure that shared code is clean, consistent,

and easy to maintain over time.

DeteKt Features
Static Code Analysis

+ Code Problem Detection: Analyzes source code to identify
common issues such as style errors, potential failures, and
complexity problems. This helps improve code quality. Code

« Quality Report: Generates detailed reports highlighting areas
of the code that require attention, thus facilitating the

identification and correction of problems.

Support for Kotlin Multiplatform
« Multiple Target Analysis: It is compatible with Kotlin
Multiplatform projects and allows analysis of shared and
platform-specific code (JVM, JS, Native).
« Code Consistency: Ensures that code quality rules are
consistently applied across different platforms, maintaining a

uniform standard.

Chapter 8 - Essential Tools and Plugins for KMP Development 161



Flexible and Customizable Configuration
« Gradle Plugin: Easily integrates with Gradle, allowing code
analysis to be configured and run as part of the build process.
« Customizable Rules: Provides a wide range of predefined
rules and allows developers to define custom rules to suit the
specific standards of their project.

Integration with Development Tools
« CI/CD Integration: It is compatible with continuous
integration and delivery (CI/CD) systems, which facilitates
the incorporation of static analysis into the development
pipeline.
« IDE Compatibility: Works well with IntelliJ IDEA and
Android Studio, allowing developers to view and correct code

quality problems directly in their development environment.

Detailed and Actionable Reports
« Various Report Formats: Generates reports in various
formats, such as HTML, XML, and plain text, which
facilitates their integration with other tools and systems.
« Link to Source Code: Provides direct links to the lines of
code that have problems, making it easier to review and
correct them.

Continuous Code Improvement
« Best Practice Rules: Includes rules based on Kotlin
development best practices, helping developers write cleaner
and more maintainable code.
« Code Smell Detection: Identifies code smells like long classes,
complex methods, and code duplication, promoting healthier
software design.

Chapter 8 - Essential Tools and Plugins for KMP Development 162



Extensibility
« Plugins and Extensions: Allows the creation of plugins and
extensions to add additional functionality or adapt DeteKt to
the specific needs of the project.
« Exception Configuration: Offers options for configuring
exceptions and exclusions, allowing the analysis to be tailored
to the specific contexts of the project.

DeteKt is a powerful and essential tool for Kotlin developers
looking to maintain high-quality, clean, and error-free code.
With features that facilitate the static analysis of Kotlin
Multiplatform projects, ensure code consistency, and allow
smooth integration with development tools and CI/CD, DeteKt
significantly improves code quality and team productivity. This
tool allows developers to proactively detect and correct
problems, promoting best practices and healthier software
design.

Hello from detekt | detekt
The official website of detekt: A static analyzer for Kotlin

hitps://detekt dev/

Chapter 8 - Essential Tools and Plugins for KMP Development 163


https://detekt.dev/
https://detekt.dev/
https://detekt.dev/

Amper

Amper is a build system developed by JetBrains, specifically

designed for the

Kotlin

ecosystem,

including  Kotlin

Multiplatform projects. Below, its main features focused on

Kotlin Multiplatform are described.

eoe [0 O [ B kwpcompomramperskeieen 1F man 2
[Cofdes O Sewch 1P 0R (D Histeey A module. yemd
kmp-compose-amper-skeieton .

3 Meat
— 3 product:
> ldea

3 kotin | matsdits | ketinTraes feemadMatadatal e
« androidhagp
» buld | generated | compose | resourceGeneratid
~ we
AndroidMankiest aml
I Mainfctivity.kt
4 moduie yami
3 bulkd | tmp | cache | expanded
» gradle
« los-app
» buid
s
0 loshpp.swift
K ViewConolien it
4 modue yami
~ ghared
» buls

+ test@andrei

* testiblos

A e yaml

Amper Features

Process Optimization

fon: exported
13: exported

ompose: exported
exported

ndreid, fosArssd, iosSimulatorAredd, iosKed)

« Build Efficiency: Optimizes the construction process by

reducing compilation times and improving the overall
workflow efficiency.

« Incremental Compilation: Supports incremental

compilation, where only recent changes in the source code

are recompiled, speeding up the build process.

Chapter 8 - Essential Tools and Plugins for KMP Development

164



Support for Kotlin Multiplatform

« Multiplatform Compatibility: It is designed to handle Kotlin
Multiplatform projects, allowing the construction of
common and platform-specific modules (JVM, JS, Native)
efficiently.

« Simplified Configuration: Provides simplified configuration
for multiplatform projects, making it easier to manage and
maintain build configurations.

Dependency Management
« Efficient Dependency Handling: Provides an advanced
system for dependency management, ensuring that all
necessary libraries and frameworks are correctly integrated
and updated.
« Conflict Resolution: Automatically handles dependency
conflicts, facilitating the integration of multiple libraries

and components into a project.

Task Automation
+ Customizable Build Tasks” Allows the creation and
configuration of customizable build tasks, adapting to the
specific requirements of each project.
« Support for Common Tasks” Includes support for common
tasks such as compilation, packaging, test execution, and
documentation generation, facilitating the development

workflow.

Chapter 8 - Essential Tools and Plugins for KMP Development 165



Amper is an advanced and efficient build system developed by
JetBrains, ideal for Kotlin projects, including Kotlin
Multiplatform. Its features optimize the construction process,
facilitate dependency management, and provide seamless
integration with JetBrains tools and ecosystems. In this way,
Amper significantly improves the efficiency and productivity
of the development workflow. This tool allows developers to
manage complex projects more effectively, ensuring fast,
reliable, and well-integrated builds in the development
environment.

GitHub: JetBrains/amper: Amper - a project configuration and build tool
with a focus on the user experience and the IDE support Amper - a
project configuration and build tool with a focus on the user experience
and the IDE support: JetBrains/amper

O https://github.com/JetBrains/amper

Summary

In summary, this chapter provides a comprehensive overview of
the various tools and technologies available for efficient
application development using Kotlin Multiplatform. From
SKIE and KMMBridge to facilitate integration with Xcode, to
Dokka and DeteKt for enhancing code quality and
documentation. The importance of analysis tools and code
coverage tools like DeteKt and IDEs and build systems like
Fleet and Amper are also highlighted. Each tool has a specific
purpose, but all work together to provide a smooth and efficient
development experience on Kotlin Multiplatform. Through this
article, developers can gain a deeper understanding of these
tools and how they can enhance their application development

Process.

Chapter 8 - Essential Tools and Plugins for KMP Development 166


https://github.com/JetBrains/amper
https://github.com/JetBrains/amper
https://github.com/JetBrains/amper
https://github.com/JetBrains/amper
https://github.com/JetBrains/amper
https://github.com/JetBrains/amper

Hello Kotlin Multiplatform!

Android
views

Jetpack Compose

Shared business logic with

Kotlin Multiplatform

i0S-specific Android-
logic specific logic

iOS APIs Android APIs
Corsliustiooth, Foundation, CorsDets, ncngkd blustooth, Core Libraries, Room, ..




References

This section compiles all bibliographic references used as sources
for the development of the content of this book on Kotlin
Multiplatform. The references are organized by chapters to
facilitate consultation and follow-up, providing the necessary
information to access the original cited materials. Each reference
includes the author or organization, the title of the resource, the
platform or website where it is available, and the corresponding
link to directly access the content. These sources have been
carefully selected to ensure updated, accurate, and relevant
information about multiplatform development with Kotlin.
Readers can use these references to delve deeper into specific
topics, verify information, or explore additional concepts that
complement the content presented in each chapter.

References 167



Chapter 1: Introduction to Kotlin Multiplatform

Jetbrains. “Compose Multiplatform, Develop stunning shared
UlIs for Android, iOS, desktop, and web”. JetBrains.com.
Jetbrains. “Choosing a configuration for your Kotlin
Multiplatform project”. JetBrains.com. https://
www.jetbrains.com/help/kotlin-multiplatform-dev/
Jetbrains. ”Kotlin Multiplatform, Simplify the development of
cross-platform projects and reduce the time spent writing and
maintaining the same code for different platforms”.
Kotlinlang.org. https://kotlinlang.org/docs/
multiplatform.html

Jetbrains. ”Create a multiplatform app using Ktor and
SQLDelight”. Jet Brains.com. https://www.jetbrains.com/
help/kotlin-multiplatform-dev/multiplatform-ktor-
sqldelight.html

Jetbrains. “Kotlin Multiplatform, Share code on your terms”.
JetBrains.com. https://www.jetbrains.com/kotlin-

multiplatform/

References 168



Chapter 2: Understanding the Basic Project
Structure

Jetbrains. “CocoaPods overview and setup ”. Kotlinlang.org.
https://kotlinlang.org/docs/native-cocoapods.html
JetBrains. "Kotlin Gradle Plugin". Kotlinlang.org. https://
kotlinlang.org/docs/gradle.html.

JetBrains. " Getting Started with Kotlin Multiplatform"'.
Kotlinlang.org. https://kotlinlang.org/docs/multiplatform-get-
started.html.

JetBrains. "Discover Kotlin Multiplatform Project".
Kotlinlang.org. https://kotlinlang.org/docs/multiplatform-
discover-project.html.

JetBrains. " Advanced Project Structure in Kotlin
Multiplatform". Kotlinlang.org. https://kotlinlang.org/docs/
multiplatform-advanced-project-structure.html.

JetBrains. "Sharing Code Across Platforms". Kotlinlang.org.
https://kotlinlang.org/docs/multiplatform-share-on-
platforms.html.

JetBrains. "Expect and Actual Declarations". Kotlinlang.org.
https://kotlinlang.org/docs/multiplatform-expect-actual.html.
JetBrains. "Kotlin Multiplatform Hierarchy". Kotlinlang.org.
https://kotlinlang.org/docs/multiplatform-hierarchy.html.
JetBrains. "Default Hierarchy Template". Kotlinlang.org.
https://kotlinlang.org/docs/multiplatform-
hierarchy.html#default-hierarchy-template.

JetBrains. "Manual Configuration of Kotlin Multiplatform
Hierarchy". Kotlinlang.org. https://kotlinlang.org/docs/
multiplatform-hierarchy.html#manual-configuration.

References 169



Chapter 3: Dependency Injection

Kotlin. "Kotlin Multiplatform update". Twitter. https://
witter.com/kotlin 17102 4016125100.
Kosi-Libs. "Getting Started with Kodein 7.22". Kosi-

Libs.org. https://kosi-libs.org/kodein/7.22/getting-

started.html.

Insert Koin. "Koin: Pragmatic Kotlin Dependency Injection"'.

Insert-Koin.io. https://insert-koin.io/.

P-Y. "DIY: Your Own Dependency Injection Library". P-Y

Blog. https://blog.p-y.wtf/diy-your-own-dependency-

injection-library.

Evan Tatarka. "Kotlin Inject". Git Hub. https://github.com/

evant/kotlin-inject.

Chapter 4: Modularization

JetBrains. "Multiplatform Project Configuration: Module
Configurations". JetBrains Help. https://www.jetbrains.com/
configuration.html#module-configurations.

Touchlab. "Optimizing Gradle Builds in Multi-Module
Projects". Touchlab. https://touchlab.co/optimizing-gradle-

builds-in-Multi-module-projects.

Touchlab. "Multiple Kotlin Frameworks in an Application".
Touchlab. https://touchlab.co/multiple-kotlin-frameworks-in-
application.

Google. "Modularization Patterns'. Android Developers.

References 170



Chapter 5: Testing

Fowler, Martin. "The Practical Test Pyramid".
MartinFowler.com. https://martinfowler.com/articles/
practical-test-pyramid.html.

Fowler, Martin. "Integration Test". MartinFowler.com.
https://martinfowler.com/bliki/IntegrationTest.html.

Fowler, Martin. ""Object Mother". MartinFowler.com.
https://martinfowler.com/bliki/ObjectMother.html.
Refactoring Guru. "Builder Design Pattern".

Refactoring. Guru. https://refactoring,guru/design-patterns/
builder.

Fowler, Martin. "Test Double". MartinFowler.com. https://
martinfowler.com/bliki/TestDouble.html.

Google. "Fundamentals of Testing". Android Developers.
https://developer.android.com/training/testing/fundamentals.
Kotlin. "Kotlinx-Kover". GitHub. https:/github.com/Kotlin/
kotlinx-kover.

References 171



Chapter 6: Using Native Libraries in Kotlin Multiplatform

« JetBrains. "Managing iOS Dependencies in Kotlin
Multiplatform: With CocoaPods". Kotlinlang.org. https://
kotlinlang.org/docs/multiplatform-ios-
dependencies.html#with-cocoapods.

. JetBrains. "Managing iOS Dependencies in Kotlin
Multiplatform: Without CocoaPods". Kotlinlang.org. https://
kotlinlang.org/docs/multiplatform-ios-
dependencies.html#without-cocoapods.

. JetBrains. "Expect and Actual Declarations". Kotlinlang.org.

https:/kotlinlang.org/docs/multiplatform-expect-actual.html.
JetBrains. "Type Aliases in Kotlin". Kotlinlang.org. @M

kotlinlang.org/docs/type-aliases.html.

References 172



Practical Example Repositories for the
Book

The following repositories provide practical example code that
complements the theoretical content presented in this book.
Each repository is designed to illustrate specific concepts of
Kotlin Multiplatform development and serve as a reference for
implementing patterns and techniques discussed in the
different chapters. These examples range from the basic
structure of a KMP project to more advanced
implementations such as modularization, integration with
native APIs, and preference management. Readers can clone,
explore, and modify these repositories to directly experiment
with the code as they progress in their le ar ning. It is
recommended to review these examples in parallel with
reading the corresponding chapters to gain a deeper and more
practical understanding of the presented concepts.

References 173



KMP for Mobile Native Developers

o https://github.com/santimattius/kmp-for-mobile-native-

developers
« KMP Multi Module Example

o https://github.com/santimattius/kmp-multi-module-

example

« KMP Preferences Example
example

« KMP Native API Playground
playground

« KMP Networking

o https://github.com/santimattius/kmp-networking

References 174



