

Overview

This book is a comprehensive guide to Kotlin Multiplatform
(KMP) aimed at native mobile developers. It begins with an
introduction to KMP, explaining how this JetBrains technology
enables code sharing across different platforms such as Android,
iOS, web, and desktop.

The book covers several fundamental topics, including:
Basic Kotlin Multiplatform project structure
Modularization and architectural best practices
Integration with compatible Jetpack libraries
Database implementation and local storage
Testing strategies in multiplatform projects

It includes practical examples with code repositories and detailed
references to official documentation. It is a valuable resource for
both developers starting with KMP and those looking to deepen
their knowledge in multiplatform development.

I am a software engineer with experience in mobile and backend
development, focused on designing efficient and sustainable
solutions, always paying attention to details to achieve clean and
functional code.
I have participated in the development of meticulously crafted
mobile applications, with an emphasis on delivering solid user
experiences. Additionally, I enjoy sharing learnings about
Android and Kotlin Multiplatform, creating content that
facilitates learning and promotes knowledge exchange within the
community.
I am driven by continuous learning and the exploration of new
technologies, transforming complex challenges into practical and
effective solutions. I believe in collaborative work as the
foundation for building robust systems and applications that
generate positive impact.

Who I am

Chapter 1: Introduction to Kotlin Multiplatform. (Pag. 1)
What is Kotlin Multiplatform?
Code Sharing Across Platforms
Strategies for Sharing Our Code
How to Really Benefit from Code Sharing

Chapter 2: Understanding the Basic Project Structure. (Pag.
16)

Basic Concepts of Kotlin Multiplatform Project
Structure
Advanced Concepts of Multiplatform Project Structure
Sharing Code Across Platforms

Chapter 3: Dependency Injection. (Pag. 32)
Implementing Dependency Injection in Kotlin
Multiplatform
Kodein
Koin
Kotlin-Inject
Manual Dependency Injection in Kotlin Multiplatform
Creating our own dependency injection framework

Chapter 4: Modularization. (Pag. 47)
Benefits of Modularization in Kotlin Multiplatform
Strategies for Modularizing a Kotlin Multiplatform
Project
Modularization in Practice
Multiple Shared Modules
Why do you need an Umbrella framework?
Exposing Multiple KMP Frameworks in Detail
Implementing the Umbrella Module

Content

Chapter 5: Testing (Pag. 71)
Benefits of Testing in Kotlin Multiplatform
Tools for Testing in Kotlin Multiplatform
How to Configure and Run our Tests
How to Avoid Slow and Coupled Tests
First Unit Test
Integration Tests
Coverage Metrics
Best Practices for Testing in Kotlin Multiplatform
Rules for Using Tests in Multiplatform Projects

Chapter 6: Using Native Libraries in Kotlin Multiplatform
(Pag. 111)

Using Android Dependencies in KMP
How to Use iOS Dependencies in KMP
Expect/Actual
Can we use it from a Kotlin Multiplatform module?

Chapter 7: Libraries (Pag. 130)
Networking
Storage
Database
Multiplatform Jetpack Libraries

Chapter 8: Essential Tools and Plugins for Kotlin
Multiplatform Development (Pag. 145)
References
Book Example Repositories

Chapter 1: Introduction to
Kotlin Multiplatform

1

Chapter 1: Introduction to Kotlin
Multiplatform

What is Kotlin Multiplatform?
Kotlin Multiplatform is a technology that simplifies cross-
platform development by allowing code sharing between
different platforms, reducing development and maintenance time
while maintaining the advantages of native programming.
Developed by JetBrains, this technology enables developers to
write code in Kotlin and share it across Android, iOS, web, and
desktop. Developers can share business logic, data models, and
other components across platforms, minimizing code duplication
and facilitating maintenance. While not all elements can be
shared due to inherent platform differences, Kotlin
Multiplatform provides tools and libraries to optimize the
amount of shared code. This code-sharing capability not only
reduces development and maintenance time but also preserves
the flexibility and advantages of native programming.

Chapter 1 - Introduction to Kotlin Multiplatform 2

Strategies for Sharing Our Code

Code Sharing Across Platforms
Kotlin Multiplatform enables maintaining a single codebase
for application logic across different platforms. Additionally,
it leverages the advantages of native programming, including
high performance and full access to native SDKs. Kotlin
offers two main mechanisms for sharing code:

Share common code across all project platforms.
Share code selectively between specific platforms to
maximize reuse on similar platforms.

Share a Piece of Logic We can start by sharing an isolated and
critical part of the application, reusing existing Kotlin code to
keep applications in sync. This strategy aims to share the smallest
and most significant logical unit of our application. What is a
'logical unit'? It's a portion of our application that solves a specific
problem—such as validations or use cases—and is platform-
independent. It's essential to promote or aspire to a good base
design from the beginning.

Chapter 1 - Introduction to Kotlin Multiplatform 3

Share Logic and Keep Native UI
When starting a new project, consider using Kotlin Multiplatform
to implement data handling and business logic just once. Keep the
user interface native to meet the most demanding requirements.
While ideal for new projects, we can also leverage existing
Android code in Kotlin, reusing already developed
implementations.
The strategy is to maintain user interfaces in native frameworks,
as they are crucial for user experience, while sharing the
application's logic and infrastructure.

Chapter 1 - Introduction to Kotlin Multiplatform 4

Share up to 100% of the code Share up to 100% of your code
with Compose Multiplatform (https://bit.ly/3QuV1qL), a
modern declarative framework for creating user interfaces across
multiple platforms. With Compose Multiplatform, you can
develop shared user interfaces for all platforms. While this
technology is still evolving, it represents a promising option for
new mobile application projects. In its current state, Compose
Multiplatform implements Material Design principles, which
may have some limitations compared to iOS's Design System.
However, the JetBrains team is developing Cupertino support
(Apple's Design System) for future versions.

Chapter 1 - Introduction to Kotlin Multiplatform 5

https://bit.ly/3QuV1qL
https://bit.ly/3QuV1qL

This is why it's important to establish a good design, as we
form a common team language when implementing solutions,
regardless of the platform.

So far, we've explored the theoretical promises of Kotlin
Multiplatform, but now let's examine its practical benefits and
the libraries we can use when starting or migrating our
development.

What Parts of Your Code Could You Share Across
Platforms?
In 2021, JetBrains conducted a survey asking: "What parts of
your code were you able to share across platforms?". While there
isn't precise data about KMP adoption at that time, the survey
results appear consistent when examining software architecture
and design principles.

How to Really Benefit from Code Sharing

What parts of your code were you able to share across platforms?

Chapter 1 - Introduction to Kotlin Multiplatform 6

Defining an Architecture When talking about architecture, we
naturally think of Clean Architecture. This methodology consists
of architectural patterns that separate frameworks and external
elements from our domain and business logic. To implement it,
we need to understand three fundamental concepts:

Domain
Fundamental concepts of our context (User, Product, Cart, etc.)
and business rules defined exclusively by us (domain services).

Application
The layer where our application use cases reside (register user,
publish product, add product to cart, etc.).

Infrastructure
Code that varies according to external decisions. This layer
contains the implementations of interfaces defined at the domain
level. We use the Dependency Inversion Principle (DIP) from
SOLID to decouple from external dependencies.
This is where frameworks and external components are
integrated, such as Repositories, HTTP Clients, and Caches.

Chapter 1 - Introduction to Kotlin Multiplatform 7

Since our domain and application layers exclusively encapsulate
business logic, they constitute the main code to be shared across
platforms. Without this code-sharing capability, we would have
to duplicate specifications in both Kotlin and Swift for each
respective platform.

Infrastructure
In this layer, we can safely implement native solutions. Following
the established definitions, we use the Dependency Inversion
Principle (D.I.P.) from SOLID to decouple our external
dependencies. To achieve this, we define contracts using Kotlin
Multiplatform's (KMP) expect-actual pattern.

Components in an application design

Chapter 1 - Introduction to Kotlin Multiplatform 8

Networking Example Let's look at an example of how to use
native Android and iOS clients to make network requests. To
begin, we'll define our repository and a remote data source. For
the data source, we'll create an interface that will have two
implementations: one for Android and another for iOS, as shown
in the following image.

Chapter 1 - Introduction to Kotlin Multiplatform 9

For Android, we'll use Retrofit, and for iOS, we'll use
URLSession. Let's see how to implement this in code. First, we'll
define an expect function that will provide a platform- specific
implementation of the data sources.

From here, we'll create our repository and implement the
corresponding data sources

Chapter 1 - Introduction to Kotlin Multiplatform 10

class GameRepository(
 private val remoteDataSources:
GameRemoteDataSources = provideGameDataSource(),
) {

 suspend fun fetch(): Result<GameResponse> {
 return remoteDataSources.getGames()
 }
}

Android Implementation

Chapter 1 - Introduction to Kotlin Multiplatform 11

actual fun provideGameDataSource():
GameRemoteDataSources {
 return AndroidGameRemoteDataSources()
}

class AndroidGameRemoteDataSources :
GameRemoteDataSources {

 private val client = RetrofitClient(baseUrl)
 private val services =
client.create<GameServices>()

 override suspend fun getGames():
Result<GameResponse> {
 return runCatching {
 val games = services.getGames()
 val jsonElement =
Json.parseToJsonElement(games)

Json.decodeFromJsonElement<GameResponse>(jsonElement)
 }
 }

 companion object {
 private const val baseUrl = "https://
www.freetogame.com/api/"
 }
}

iOS Implementation

Once these configurations are implemented, our KMP project
will have the following structure

Chapter 1 - Introduction to Kotlin Multiplatform 12

actual fun provideGameDataSource():
GameRemoteDataSources {
 return IOSGameRemoteDataSources()
}

class IOSGameRemoteDataSources : GameRemoteDataSources
{

 private val client = URLSessionClient()

 override suspend fun getGames():
Result<GameResponse> {
 return runCatching {
 val jsonString = client.fetch(baseUrl)

Json.decodeFromString<GameResponse>(jsonString)
 }
 }

 companion object {
 private const val baseUrl = "https://
www.freetogame.com/api/games"
 }
}

💡

As we mentioned that "we'll rely on SOLID's DIP to decouple
from external dependencies", we can also use native code, that is,
code implemented directly in the platform where we're using our
multiplatform code. Let's look at an example of this in iOS with
Swift. Since GameRemoteDataSource is an interface in Kotlin, it
translates to a protocol in Swift.

Spoiler Alert: In the next chapter, we'll explore the structure of a
Kotlin Multiplatform project.

Chapter 1 - Introduction to Kotlin Multiplatform 13

You can find the complete example in the following repository:
GitHub - KMP for Mobile Native Developers (https://
bit.ly/3XgfS4P)

Note that type compatibility is lost here, as we can see in the
getGames function signature which returns Any? We can
implement this as follows

Chapter 1 - Introduction to Kotlin Multiplatform 14

class SwiftGameRemoteDataSources: GameRemoteDataSources {

 func getGames() async throws -> Any? {

 guard let url = URL(string: "https://
www.freetogame.com/api/games") else {
 throw GameServiceError.invalidURL
 }
 let (data, _) = try await
URLSession.shared.data(from: url)
 let result = try
JSONDecoder().decode(GameResponse.self, from: data)
 return result.map{ item in item.asDomainModel() }
 }

}

import Shared

@Observable
class GameViewModel{

 let repository = GameRepository(remoteDataSources:
SwiftGameRemoteDataSources())

 var data:String = ""

 func load(){
 self.repository.fetch(completionHandler:{response,_
in
 self.data = "\(String(describing: response))"
 })
 }
}

https://bit.ly/3XgfS4P
https://bit.ly/3XgfS4P
https://bit.ly/3XgfS4P
https://bit.ly/3XgfS4P

While sharing business logic is valuable in Kotlin
Multiplatform, reusing native code at the infrastructure level
can be complex to maintain due to platform differences. For
example, when handling preferences, Android requires a
Context while iOS uses UserDefaults, creating platform-
specific dependencies. To address this, we'll explore
multiplatform libraries that offer common abstractions for
storage, networking, and other essential functionalities,
enabling more consistent implementation and greater code
reuse. In the next chapter, we'll analyze the basic structure of a
Kotlin Multiplatform project, including modules, source sets,
and targets - fundamental elements for developing efficient
multiplatform applications.

GitHub - santimattius/kmp-for-mobile-
native-developers at
feature_01_expect_actual KMP for
Mobile Native Developers. Contribute
to santimattius/kmp-for-mobile-
native- developers development by
creating an account on GitHub.

Chapter 1 - Introduction to Kotlin Multiplatform 15

https://github.com/santimattius/kmp-for-mobile-native-developers/tree/feature_01_expect_actual
https://github.com/santimattius/kmp-for-mobile-native-developers/tree/feature_01_expect_actual
https://github.com/santimattius/kmp-for-mobile-native-developers/tree/feature_01_expect_actual
https://github.com/santimattius/kmp-for-mobile-native-developers/tree/feature_01_expect_actual
https://github.com/santimattius/kmp-for-mobile-native-developers/tree/feature_01_expect_actual

Chapter 2: Understanding the
Basic Project Structure

16

Chapter 2: Understanding the Basic
Project Structure
In this chapter, we'll look at the structure of a multiplatform
project and the fundamental concepts introduced when sharing
code in KMP. Each Kotlin Multiplatform project includes three
modules:

shared is a Kotlin module that contains the common logic
for Android and iOS applications: the code that is shared
between platforms. It uses Gradle (https://bit.ly/419QejC) as
a build system to automate the build process.
composeApp is a Kotlin module that compiles into an
Android application. It uses Gradle as a build system. The
composeApp module depends on and uses the shared
module as a regular Android library.
iosApp is an Xcode project that compiles into an iOS
application. It depends on and uses the shared module as an
iOS framework. The shared module can be used as a regular
framework or as a CocoaPods (https://bit.ly/41eANqa)
dependency. By default, the Kotlin Multiplatform wizard
creates projects that use the regular framework dependency.

Chapter 2 - Understanding the Basic Project Structure 17

https://bit.ly/419QejC
https://bit.ly/419QejC
https://bit.ly/41eANqa
https://bit.ly/41eANqa

The shared module consists of three source sets: androidMain,
commonMain, and iosMain. A "source set" is a grouping of
related files in Gradle, where each set handles its own
dependencies. In Kotlin Multiplatform, these source sets can
target different platforms within the shared module. The
common set contains the Kotlin code that is shared, while the
platform-specific sets implement specialized Kotlin code for
each target. In the case of androidMain, Kotlin/JVM is used,
and for iosMain, Kotlin/Native.

18Chapter 2 - Understanding the Basic Project Structure

When the shared module is integrated as an Android library,
the common Kotlin code is compiled to Kotlin/JVM. However,
when integrated as an iOS framework, this same code is
compiled to Kotlin/Native.

Chapter 2 - Understanding the Basic Project Structure 19

Let's now dive deeper into Source sets and Targets, and how they
indicate which platforms we can share our code with.

Targets define the specific platforms for which Kotlin will
compile the shared code, such as Android and iOS in mobile
projects. In KMP, a target is an identifier that specifies the type
of compilation. It determines the format of generated binary
files, available language constructs, and dependencies that can be
used.

Targets

Basic Concepts of Kotlin Multiplatform Project
Structure

Chapter 2 - Understanding the Basic Project Structure 20

kotlin {
 androidTarget {
 compilations.all {
 kotlinOptions {
 jvmTarget =
JavaVersion.VERSION_1_8.toString()
 }
 }
 }

 listOf(
 iosX64(),
 iosArm64(),
 iosSimulatorArm64()
).forEach { iosTarget ->
 iosTarget.binaries.framework {
 baseName = "Shared"
 isStatic = true
 }
 }
}

The resulting source sets hierarchy is as follows

As we can see in the code above, targets can specify
particular configurations for each platform. For example,
for Android we are indicating in kotlinOptions that the
jvmTarget should be Java 1.8. There is a default hierarchy
within the targets, where if our
definition is the following

21

kotlin {
 androidTarget()
 iosArm64()
 iosSimulatorArm64()
}

Chapter 2 - Understanding the Basic Project Structure

Next, we'll see how to access these source sets and how to define
specific dependencies within them.

The "source sets" shown in green are created and active in
the project, while those in gray from the default template are
ignored. For example, the Kotlin Gradle plugin doesn't
generate code for watchOS because the project has no targets
defined for this platform.

The basics of Kotlin Multiplatform project structure | Kotlin
With Kotlin Multiplatform, you can share code among different platforms.
This article explains the constraints of the shared code, how to distinguish
between shared and platform-specific parts of

https://kotlinlang.org/docs/multiplatform-discover-project.html

Source sets
A Kotlin source set is a collection of files that share targets,
dependencies, and compilation configurations. It is the
main mechanism for sharing code in multiplatform projects.
Each source set in a multiplatform project:

22

Has a unique name within the project.
Contains files and resources, organized in a directory that
bears the source set's name.
Specifies the targets for which the code compiles,
determining which language features and dependencies are
available.
Defines its own dependencies and compilation
configurations.

Chapter 2 - Understanding the Basic Project Structure

https://kotlinlang.org/docs/multiplatform-discover-project.html
https://kotlinlang.org/docs/multiplatform-discover-project.html
https://kotlinlang.org/docs/multiplatform-discover-project.html

Chapter 2 - Understanding the Basic Project Structure

Kotlin offers several predefined source sets. Among them,
commonMain stands out, as it is present in all multiplatform
projects and brings together all declared targets. In the src
directory of our shared module, we'll find the defined source sets.
For example, in a project with commonMain, iosMain, and
androidMain, the source sets are structured as follows:

23

Within our source sets, we can define platform-specific code
for each supported platform.

In Gradle scripts, source sets are accessed by name within the
kotlin.sourceSets {} block:

Chapter 2 - Understanding the Basic Project Structure

24

kotlin {

 // Targets
 androidTarget {
 compilations.all {
 kotlinOptions {
 jvmTarget = JavaVersion.VERSION_1_8.toString()
 }
 }
 }

 listOf(
 iosX64(),
 iosArm64(),
 iosSimulatorArm64()
).forEach { iosTarget ->
 iosTarget.binaries.framework {
 baseName = "Shared"
 isStatic = true
 }
 }

 // Sourcets
 sourceSets {
 commonMain.dependencies {
 //.....
 }

 androidMain.dependencies {
 //.....
 }

 iosMain.dependencies {
 //.....
 }
 }
}

The basics of Kotlin Multiplatform project structure | Kotlin
With Kotlin Multiplatform, you can share code among different platforms.
This article explains the constraints of the shared code, how to distinguish
between shared and platform-specific parts of

https://kotlinlang.org/docs/multiplatform-discover-project.html#source-sets

In this section, we'll explore some advanced concepts of the
Kotlin Multiplatform project structure and how they relate to
Gradle implementation. This information will be useful if you
need to work with low-level abstractions of Gradle builds
(configurations, tasks, publications, and others) or if you're
creating a Gradle plugin for Kotlin Multiplatform builds.

Chapter 2 - Understanding the Basic Project Structure 25

Advanced Concepts of Multiplatform Project
Structure

https://kotlinlang.org/docs/multiplatform-discover-project.html#source-sets
https://kotlinlang.org/docs/multiplatform-discover-project.html#source-sets
https://kotlinlang.org/docs/multiplatform-discover-project.html#source-sets

DependsOn
dependsOn is a specific relationship in Kotlin that connects two
source sets. This connection can occur between common and
platform-specific source sets, such as when jvmMain depends on
commonMain, or iosArm64Main depends on iosMain.

To better understand how it works, let's take two Kotlin source
sets A and B. When we write A.dependsOn(B), this means:

A has access to B's API, including its internal declarations.
A can implement B's expected declarations. This is
fundamental, as A can only provide actuals for B if there is a
dependsOn relationship, either direct or indirect.
B must compile for all of A's targets, in addition to its own
targets.
B inherits all of A's regular dependencies.

This dependsOn relationship generates a tree-like hierarchical
structure between
source sets.

For more information about advanced concepts of the
multiplatform project structure, you can refer to the official
Kotlin documentation.

kotlin {

}

// Targets declaration
sourceSets {

// Example of configuring the dependsOn relation
iosArm64Main.dependsOn(commonMain)

}

26Chapter 2 - Understanding the Basic Project Structure

https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html
https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html
https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html
https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html

In multiplatform projects, you can configure dependencies from
both published libraries and other Gradle projects.
Dependency configuration in Kotlin Multiplatform follows a
structure similar to Gradle, where:

The dependencies {} block is used in the build script.
The appropriate scope for dependencies is selected, such as
implementation or api.
The dependency is referenced through its coordinates when
published in a repository (for example,
"org.jetbrains.kotlinx:kotlinx-coroutines-android:1.8.0") or
through its path if it's a local Gradle project (like
project(":utils:concurrency")).

Dependency configuration in multiplatform projects has a
distinctive feature: each Kotlin source set has its own
dependencies {} block, allowing you to declare platform-specific
dependencies.

Advanced concepts of the multiplatform project structure | Kotlin
This article explains advanced concepts of the Kotlin Multiplatform project
structure and how they map to the Gradle implementation. This information will
be useful if you need to work with low-level abstractions

https://kotlinlang.org/docs/multiplatform-advanced-project-structure.
html#dependencies-and-dependson

Dependencies on Other Libraries or Projects

Chapter 2 - Understanding the Basic Project Structure 27

https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html#dependencies-and-dependson
https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html#dependencies-and-dependson
https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html#dependencies-and-dependson
https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html#dependencies-and-dependson

Let's consider a multiplatform project that uses a multiplatform
library, such as kotlinx.coroutines :

For more information about multiplatform dependencies, you
can refer to the Kotlin Multiplatform Dependencies
documentation.

Advanced concepts of the multiplatform project structure | Kotlin
This article explains advanced concepts of the Kotlin Multiplatform project
structure and how they map to the Gradle implementation. This information will
be useful if you need to work with low-level abstractions

https://kotlinlang.org/docs/multiplatform-advanced-project-structure.
html#dependencies-on-other-libraries-or-projects

Chapter 2 - Understanding the Basic Project Structure

kotlin {

// Targets declaration
sourceSets {

androidMain.dependencies {

implementation("org.jetbrains.kotlinx:kotlinx-
coroutines-android:1.8.0"

}

}
}

kotlin {

androidTarget()
iosArm64()

// Android
// iPhone devices

iosSimulatorArm64() // iPhone simulator on Apple
Silicon

sourceSets {
commonMain.dependencies {

implementation("org.jetbrains.kotlinx:kotlinx-
coroutines-core:1.8.0")

}

}
}

28

https://kotlinlang.org/docs/multiplatform-dependencies.html
https://kotlinlang.org/docs/multiplatform-dependencies.html
https://kotlinlang.org/docs/multiplatform-dependencies.html
https://kotlinlang.org/docs/multiplatform-dependencies.html
https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html#dependencies-on-other-libraries-or-projects
https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html#dependencies-on-other-libraries-or-projects
https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html#dependencies-on-other-libraries-or-projects
https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html#dependencies-on-other-libraries-or-projects
https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html#dependencies-on-other-libraries-or-projects
https://kotlinlang.org/docs/multiplatform-advanced-project-structure.html#dependencies-on-other-libraries-or-projects

Dependency Resolution
In the dependency resolution process for multiplatform projects,
three fundamental aspects stand out:

Multiplatform Dependencies Propagation: Dependencies
declared in the commonMain source set automatically
propagate to other source sets with dependsOn relationships.
For example, a dependency added to commonMain extends
to iosMain, jvmMain, iosSimulatorArm64Main, and
iosX64Main. This prevents duplication and simplifies
dependency management.
Intermediate and Final State of Dependency Resolution: The
commonMain source set acts as an intermediate state in
dependency resolution, while platform-specific source sets
represent the final state. After resolution, each multiplatform
library is structured as a collection of its individual source
sets, allowing for more precise management and ensuring
project coherence.
Resolution of Dependencies by Compatible Targets: Kotlin
ensures that a dependency's source sets are compatible with
those of the consumer. For example, if a source set compiles
for androidTarget, iosX64, and iosSimulatorArm64, the
dependency must offer source sets compatible with these
targets. This ensures dependencies work across all target
platforms.

29Chapter 2 - Understanding the Basic Project Structure

In summary, dependency resolution in multiplatform projects is
based on three pillars: automatic propagation from
commonMain, management of intermediate and final states,
and compatibility between dependencies and consumers. This
system ensures efficient and coherent management in Kotlin
multiplatform projects.

Sharing Code Across Platforms

30Chapter 2 - Understanding the Basic Project Structure

If you have business logic common to all platforms, you can
avoid code duplication by sharing it in the common source set.
Some dependencies between source sets are established
automatically, eliminating the need to manually specify
dependsOn relationships:

Between platform-specific source sets that depend on the
common source set (for example, jvmMain, macosX64Main).
Between main and test source sets of a specific target (such as
androidMain and androidUnitTest).

To access platform-specific APIs from shared code, use Kotlin's
expect/actual declarations mechanism, which we explored in the
previous post.

Chapter 2 - Understanding the Basic Project Structure

Sharing Code Across Similar Platforms
Multiplatform projects often require creating multiple native
targets that can reuse much of the common logic and third-party
APIs. A common example is in iOS projects, where two targets
are needed: one for iOS ARM64 devices and another for the x64
simulator. While these have separate specific source sets, they
rarely require different code between them, and their
dependencies are very similar. This allows sharing iOS-specific
code between both targets. Therefore, it's advantageous to have a
shared set of sources for both iOS targets, allowing Kotlin/Native
code to directly access the common APIs of both iOS device and
simulator. To implement this, you can share code between native
targets using the hierarchical structure through two options:

31

Using the default hierarchy template
Manually configuring the hierarchical structure

https://kotlinlang.org/docs/multiplatform-hierarchy.html
https://kotlinlang.org/docs/multiplatform-hierarchy.html
https://kotlinlang.org/docs/multiplatform-hierarchy.html#default-hierarchy-template
https://kotlinlang.org/docs/multiplatform-hierarchy.html#default-hierarchy-template
https://kotlinlang.org/docs/multiplatform-hierarchy.html#manual-configuration

Chapter 3: Dependency
Injection

32

Chapter 3: Dependency Injection
In software development, dependency management is essential.
Dependency Injection (DI) is a design pattern that allows
application components to receive their dependencies instead of
creating them internally. This promotes modularization,
facilitates code reuse, and simplifies unit testing. In Kotlin
Multiplatform (KMP), DI is fundamental to ensure code
cohesion and portability across different platforms.

Benefits of Dependency Injection

Code Reuse: By decoupling components, code can be reused
across different platforms without significant changes.
Testability: DI simplifies unit testing by allowing
dependencies to be replaced with mock or fake objects.

In future articles, we'll explain how to mock objects for
testing in KMP.

Flexibility: DI facilitates the incorporation of new
functionalities and changes in dependencies without
affecting existing code, improving scalability and
maintainability.
Clarity and Organization: DI promotes a clearer and more
organized code structure by explicitly defining dependencies
and their relationships.

Chapter 3 - Dependency Injection 33

To implement Dependency Injection (DI) in Kotlin
Multiplatform, there are several libraries and approaches
available. Each offers different advantages and disadvantages:

Although JetBrains does not provide a native dependency
injection solution for the multiplatform ecosystem, they
recommend using existing community-developed solutions.

Chapter 3 - Dependency Injection

Jetbrains tweet about Dependency Injection tip

Implementing Dependency Injection in
Kotlin Multiplatform

34

Kodein
Kodein is a dependency injection library for Kotlin. It's designed
to simplify dependency management in Kotlin applications
across multiple platforms: Android, iOS, Web, and Backend.
Thanks to its simple syntax and straightforward configuration, it
has become a popular choice for Kotlin Multiplatform projects.

Let's examine each of these options in detail.

Kodein: A native Kotlin DI library that stands out for its
simple syntax and easy configuration. Its platform-
independent nature makes it ideal for KMP projects.
Koin: A popular library that uses a declarative syntax and is
easy to configure. While it relies on reflection, this can
present limitations on some platforms like iOS.
Kotlin Inject is a compile-time DI library designed
specifically for Kotlin Multiplatform, ensuring efficient,
reflection-free injection across JVM, Native, and JavaScript
platforms.
Manual DI: An alternative that, while requiring more
implementation effort, offers total control over the process.
It involves creating and injecting dependencies externally
through constructors or methods.

Chapter 3 - Dependency Injection 35

Main Features of Kodein
Concise and Declarative Syntax: Kodein uses an
intuitivesyntax that facilitates the definition and
resolution of dependencies, improving code readability
and maintainability.
Platform Independent: Being developed purely in
Kotlin,Kodein works on any platform without worrying
about compatibility with specific frameworks or libraries.
Kotlin Coroutines Support: Kodein integrates perfectly
with Kotlin Coroutines, facilitating dependency
management in asynchronous and reactive code.
Modular Configuration: Offers a modular system for
configuring dependencies, simplifying the organization
and maintenance of extensive projects.
Flexible Injection: Allows dependency injection through
both constructor and property, offering versatility in
dependency resolution.
Annotation Support: Includes annotations to identify
components and configurations, improving code clarity.

Basic Usage of Kodein

To implement Kodein in a Kotlin Multiplatform project, the
first step is to add the dependency to the configuration file.
Then, you can define dependency modules and register
application components using the Kodein API. Finally, you'll be
able to resolve these dependencies in any section of the
application where you need them.

Let's look at a basic code example using Kodein:
36Chapter 3 - Dependency Injection

// Define a dependency module
val appModule = DI.Module("appModule") {

bind<Database>() with singleton { Database() }
bind<UserRepository>() with singleton {

UserRepository(instance()) }

}

bind<MyService>() with singleton { MyService(instance()) }

// Configure the DI container
val di = DI {

}

importAll(appModule)

// Resolve dependencies in a class
class MyService(private val userRepository: UserRepository) {

}

// ...

// Use resolved dependencies
val myService by di.instance<MyService>()

In this example, a dependency module is defined that provides a
database implementation and a user repository. Then, Kodein is
configured with this module and an instance of MyService that
depends on the user repository is resolved.

Getting started with Kodein-DI: Kodein Open Source Initiative Documentation
Kodein-DI is a Dependency Injection library. It allows you to bind your business unit interfaces with their
implementation and thus having each business unit being independent.

https://kosi-libs.org/kodein/7.22/getting-started.html

37Chapter 3 - Dependency Injection

https://kosi-libs.org/kodein/7.22/getting-started.html
https://kosi-libs.org/kodein/7.22/getting-started.html
https://kosi-libs.org/kodein/7.22/getting-started.html

Main Features of Koin
Non-Intrusive: Uses pure Kotlin functions, integrating
naturally without modifying existing architecture.
Clear Syntax: Employs a simple DSL that facilitates
dependency definition and resolution.
Optimized Performance: By not using reflection, it improves
performance and is compatible with iOS/Kotlin Native.
Flexibility: Allows constructor and property injection,
adapting to different needs.
Lifecycle Control: Manages scopes to control instance creation
and destruction.
High Compatibility: Easily integrates with Kotlin frameworks
and libraries.

Basic Usage of Koin
To implement Koin in a Kotlin Multiplatform project, follow
these steps: first, add the Koin dependency to the project
configuration file. Then, define dependency modules and register
application components using the Koin API. Finally, resolve
dependencies where you need them in your application.

Koin is a lightweight Dependency Injection library for Kotlin that
stands out for its simplicity and ease of use. Compatible with
Android, backend, and iOS, it prioritizes clean and readable code.

Koin

38Chapter 3 - Dependency Injection

Let's look at a basic implementation example with Koin: In this
example, a dependency module is defined that provides a
database, a user repository, and a ViewModel. Then, Koin is
configured with this module and an instance of MyViewModel,
which depends on the user repository, is obtained.

// Define a dependency module
val myModule = module {

}

single { Database() }
single { UserRepository(get()) }
factory { MyViewModel(get()) }

// Configure Koin with the defined module
startKoin {

}

modules(myModule)

// Resolve dependencies in a class
class MyActivity : AppCompatActivity() {

}

private val viewModel: MyViewModel by viewModel()
// ...

Koin: The Kotlin Dependency Injection Framework
The Kotlin Dependency Injection Framework

https://insert-koin.io/

39Chapter 3 - Dependency Injection

https://insert-koin.io/
https://insert-koin.io/

Kotlin Inject for Multiplatform
Kotlin Inject is a lightweight, reflection-free dependency
injection (DI) library for Kotlin, designed specifically for Kotlin
Multiplatform (KMP). It leverages Kotlin compiler plugins to
generate dependency graphs at compile time.

Key Features

Kotlin Inject provides several advantages over traditional DI
frameworks:
Multiplatform Support: Works seamlessly with JVM, Native,
and JS, making it ideal for KMP projects.
Reflection-Free: Unlike Dagger, it avoids runtime reflection,
making it performant in Kotlin/Native environments.
Compile-Time Dependency Injection: Generates dependency
graphs at build time, eliminating runtime overhead.
Constructor Injection – Encourages immutability and clear
dependency management.
Lightweight & Simple – Requires minimal setup, reducing
boilerplate code.

40Chapter 3 - Dependency Injection

By marking each class with @Inject, Kotlin Inject can
automatically generate the necessary dependency graph.

Creating a Dependency Container
In Kotlin Inject, a Component is an abstraction that defines the
dependencies available in an application.

Example: Dependency Injection in KMP Define Dependencies The

first step in setting up dependency injection is to annotate
classes with @Inject, signaling that they can be automatically
provided by the DI system.

import me.tatarka.inject.annotations.Inject

// Service - Basic dependency
class UserService @Inject constructor() {

}

fun getUser() = "Santiago Mattiauda"

// Repository - Inject dependency
class UserRepository @Inject constructor(private val
userService: UserService) {

}

fun fetchUser(): String = userService.getUser()

// ViewModel - Inject repository
class UserViewModel @Inject constructor(private val
userRepository: UserRepository) {

}

fun getUserName(): String = userRepository.fetchUser()

41Chapter 3 - Dependency Injection

fun main() {

val appComponent = AppComponent.create()
val viewModel = appComponent.userViewModel

 println(viewModel.getUserName()) // Output:
Santiago Mattiauda
}

import me.tatarka.inject.annotations.Component

// Define a dependency container using @Component
@Component
abstract class AppComponent {
 abstract val userViewModel: UserViewModel

companion object {
fun create(): AppComponent =

AppComponent::class.create()

}

}

This AppComponent class serves as the centralized factory for
managing instances. By calling AppComponent.create(), we
obtain an instance of the component with all dependencies
properly injected.

This approach ensures that all dependencies are created and
managed automatically without manual instantiation.

Using the Dependency Injection System
With the component set up, we can now retrieve an instance of
UserViewModel and use it:

42Chapter 3 - Dependency Injection

Manual Dependency Injection in Kotlin
Multiplatform

Implementation
Identify: Determine which dependencies each class needs.
Create: Generate instances at the top level using patterns
like Singleton.
Inject: Provide dependencies through constructors.
Manage: Handle the lifecycle of dependencies.

Basic Principles
Constructor Injection: Dependencies are passed through
constructors, keeping code explicit and clear.
OOP Approach: Aligns with object-oriented programming,
using clear interfaces between components.

43Chapter 3 - Dependency Injection

Manual Dependency Injection (DI) is a simple alternative for
managing dependencies in KMP projects without using external
libraries. This approach involves creating and injecting
dependencies directly into the classes that need them.

Advantages and Challenges

Advantages: Simplicity, total control, and transparency in
dependency flow.
Challenges: Higher coupling, manual maintenance, and
possible code repetition.

// Service: Base dependency
class UserService {

}

fun getUser(): String = "Santiago Mattiauda"

// Repository: Receives dependency via constructor
class UserRepository(private val userService: UserService) {

}

fun fetchUser(): String = userService.getUser()

// ViewModel: Also receives dependency via constructor
class UserViewModel(private val userRepository: UserRepository) {

}

fun getUserName(): String = userRepository.fetchUser()

// Dependency Container (Manages and creates instances)
object AppContainer {

val userService: UserService by lazy { UserService() }
val userRepository: UserRepository by lazy {

UserRepository(userService) }
 val userViewModel: UserViewModel by lazy {
UserViewModel(userRepository) }
}

// Application usage
fun main() {

val viewModel = AppContainer.userViewModel
println(viewModel.getUserName()) // Output: Santiago

Mattiauda
}

44Chapter 3 - Dependency Injection

Key Considerations
Design: Create clear interfaces following SOLID principles.
Lifecycle: Properly manage instance creation and
destruction.
Testing: Facilitate unit testing through mocks.
Scalability: Maintain a modular and structured approach.
Documentation: Maintain clear documentation and effective
team communication.

As the title suggests, while this is a secondary topic, it
represents a viable alternative when we want to avoid external
dependencies for dependency injection and reduce code
repetition inherent to manual injection. While we won't delve
into this topic, I'd like to conclude this article by
recommending the following resource about it.

Off Topic: Creating our own dependency injection
framework

DIY your own Dependency Injection library!
Demystifying the internals of DI libraries

https://blog.p-y.wtf/diy-your-own-dependency-injection-
ylibrar

45Chapter 3 - Dependency Injection

https://blog.p-y.wtf/diy-your-own-dependency-injection-library
https://blog.p-y.wtf/diy-your-own-dependency-injection-library
https://blog.p-y.wtf/diy-your-own-dependency-injection-library

Koin is a lightweight library for implementing Dependency
Injection in Kotlin applications. It stands out for its ease of use
and efficiency, being highly valued by the developer community.
Its cross-platform compatibility and frequent updates make it a
reliable option for Kotlin Multiplatform projects.

Kodein is a robust library for managing dependencies in Kotlin
Multiplatform projects. It offers an intuitive syntax, cross-
platform support, and advanced features such as Kotlin
Coroutines integration. Its efficiency, flexibility, and support
from an active community position it as a solid solution for
dependency injection in Kotlin.

Kotlin Inject is an excellent choice for Kotlin Multiplatform
projects requiring efficient and lightweight Dependency Injection.
By leveraging compile-time DI, it avoids the pitfalls of reflection-
based approaches while providing an intuitive and scalable
solution.

Manual Dependency Injection allows total control over
dependency management in Kotlin Multiplatform projects
without relying on external libraries. While it requires more
implementation and maintenance effort, it is ideal for small
projects or teams that prefer a direct approach. However, it is
crucial to carefully evaluate project requirements and weigh the
advantages and challenges before opting for manual DI in a
KMP project.

Summary of the presented alternatives

46Chapter 3 - Dependency Injection

Chapter 4: Modularization

47

Chapter 4: Modularization
Modularization has gained greater importance in the face of
growing complexity in mobile applications and platform
diversity. This strategy is fundamental for improving code
maintainability, scalability, and reusability. In this scenario,
Kotlin Multiplatform emerges as an ideal solution for developing
mobile applications across different platforms, such as Android
and iOS. Let's see how to modularize a Kotlin Multiplatform
project.

KMP allows sharing business logic, data models, and
components across various mobile applications, resulting in more
efficient development and greater consistency between
application versions. Modularization in a KMP project offers
several significant benefits:

Benefits of Modularization in Kotlin
Multiplatform

C1hapter 4 - Modularization 48

So far, we've explored the theory behind modularization. But
what strategies can we implement to make the most of cross-
platform development?

There are various strategies for modularizing a KMP project.
The most common ones are:

Chapter 4 - Modularization 49

Code Reusability: Independent modules facilitate the reuse of
components and functionalities across different parts of the
application and between platforms.
Maintainability: Well-defined modules simplify code
understanding and maintenance. Being able to develop, test,
and update each module independently speeds up
development and reduces errors.
Scalability: Modularization facilitates project growth,
allowing modules to be added or modified without affecting
existing code.
Decoupling: Separation into independent modules reduces
coupling between components, making the code more flexible
and easier to extend.

Strategies for Modularizing a Kotlin
Multiplatform Project

This approach is valid for both monorepos and separate
repositories, as the fundamental aspects are the configurations
of projects using KMP.

Modularization in Practice
When creating a KMP project, whether it's an App or Library
type, a Shared module is automatically generated that will
function as a shared module between both platforms: Android
and iOS.

Layer-based Division: Organizes code into modules
representing different architecture layers, such as
presentation, business logic, and data access.
Feature-based Division: Groups code related to a specific
functionality into a single module, facilitating its reuse and
maintenance.
Platform-based Division: Separates platform-specific code
into different modules, keeping shared code in a central
module.
Domain-based Division: Organizes code into modules
representing different application domains, such as user,
authentication, and purchases.

Chapter 4 - Modularization 50

Pros

Cons

A simple design with a single module reduces cognitive
load. You don't need to think about where to put your
functionality or how to logically divide it into parts.
Works very well as a starting point.

Build time increases as the shared module grows.
This design doesn't allow for separate features or having
dependencies only in the features that the application
needs.

Chapter 4 - Modularization 51

When a KMP project grows, it's common to add more shared
modules besides the initial one. This happens naturally when
implementing new functionalities in KMP instead of using
native modules, or when teams gradually adopt this
technology. To maintain scalable and manageable code, it's
recommended to split the shared module into smaller feature
modules. Let's see this represented in the following image.

As shown in the image, we have two modules (features) that
represent different flows in our application, along with a
shared module (data) that these features use. Additionally,
we have sub-modules to manage specific information in our
application (in this case, books). While this approach offers
clear benefits in the separation of responsibilities, it also
presents specific challenges when generating binaries for
each platform (especially in iOS, as we'll see later).

Example of a book selling app

Chapter 4 - Modularization 52

Pros

Cons

Separation of concerns for shared code.
Better scalability.

More complicated setup, including umbrella framework
configuration.
More complex dependency management across modules.

When working with multiple shared modules, there are
important differences between platforms. In Android, the
application can directly depend on all or some feature modules
as needed, as it uses Gradle modules for its definition. On the
other hand, the iOS application can only depend on a single
framework generated by the Kotlin Multiplatform module. To
handle multiple modules in iOS, it's necessary to create an
additional module called the Umbrella module, which depends
on all modules in use. This module is configured to generate a
framework containing all modules, known as the Umbrella
framework.

Multiple Shared Modules

Chapter 4 - Modularization 53

The Android application can depend on the Umbrella module to
maintain consistency, or use feature modules separately. The
Umbrella module typically contains utilities and dependency
injection configurations. The Umbrella framework only exports
selected modules, especially when consumed as a remote
dependency. This helps minimize the final artifact size and
excludes unnecessary auto- generated code. An important
limitation of this approach is that the iOS application must
consume all feature modules included in the Umbrella
framework, without being able to select only some of them.

Chapter 4 - Modularization 54

For more details about the exact limitations, please check the
TouchLab documentation.

While it's technically possible to use multiple Kotlin
Multiplatform module frameworks in iOS, it's not recommended.
When a module is converted to a framework, it includes all its
dependencies; if these are duplicated, it not only increases the
application size but can also generate conflicts and errors. Kotlin
avoids generating common framework dependencies to maintain
an efficient binary and eliminate redundancies. Sharing these
dependencies is not feasible because the Kotlin compiler cannot
anticipate the requirements of other compilations. The optimal
solution is to implement an Umbrella framework, which prevents
dependency duplication, optimizes the final result, and avoids
compatibility issues.

Why do you need an Umbrella framework?

💡

Chapter 4 - Modularization 55

https://touchlab.co/multiple-kotlin-frameworks-in-application/
https://touchlab.co/multiple-kotlin-frameworks-in-application/

Exposing Multiple KMP Frameworks in Detail
Kotlin Multiplatform has a fundamental limitation: the iOS
platform cannot access Kotlin modules individually.
Instead, it generates a single framework containing all
exported Kotlin classes. While it is possible to generate
multiple frameworks, this practice is inefficient as it
produces a larger binary and creates overhead due to the
duplication of Kotlin standard library classes. Additionally,
all shared dependencies between Kotlin modules are also
duplicated. In our example, we would have something like
this:

Chapter 4 - Modularization 56

The Book entity from the Home framework and the Book
entity from the Checkout framework would represent the
same entity defined in the data module. However, in our iOS
application, these would be treated as two different entities
in different contexts, generating unnecessary duplication.
The main limitation is that, in iOS, common classes from
each framework are treated as different types. Therefore, a
shared data structure cannot be used interchangeably
between different frameworks.

Chapter 4 - Modularization 57

As we can observe, the ProcessCheckout class from the
:checkout module and the GetAll class from the :home module
depend on BookRepository, which is located in the :data:book
module. The structure of our project would look like this:

Let's see how to implement what we discussed above in
code. We'll create a KMP project that will include the
Home, Checkout, and Data modules, following the structure
we've seen in the examples. In this first implementation,
we'll separate the code using frameworks in iOS and
modules in Android. The interesting part will be observing
the behavior of our objects when working with multiple
frameworks in iOS.
To illustrate this, we'll use the following class diagram:

Let's see our example implementation

Chapter 4 - Modularization 58

As we can observe in the diagram below,

Chapter 4 - Modularization 59

Example of a book selling application.

Android and iOS applications will be responsible for
orchestrating the modules (frameworks in iOS) through native
code (Kotlin or Swift).

The implementation of multiple modules/frameworks generated from KMP
modules can facilitate the gradual adoption of this technology in existing
projects. However, it's important to consider the limitations mentioned
above if we opt for this approach.

Chapter 4 - Modularization 60

Let's start with Android Our Android application will use
the following dependency configuration

We will include the modules :checkout, :home and :data in our
build.gradle.kts file. Next, we'll see a practical example of using
classes between different modules and how the references from
the :data module work, which is shared between the feature
modules. For this, we'll create a ViewModel that will
instantiate the ProcessCheckout and GetAll classes, both
sharing a common dependency: BookRepository .

dependencies {
//Checkout

implementation(projects.checkout)
//Home
implementation(projects.home)
//Data
implementation(projects.data)

implementation(libs.compose.ui)
implementation(libs.compose.ui.tooling.preview)
implementation(libs.compose.material3)
implementation(libs.androidx.activity.compose)

}

debugImplementation(libs.compose.ui.tooling)

Chapter 4 - Modularization 61

Looking at the imports, we'll notice that BookRepository comes
from data and is the same dependency used by both home and
checkout modules. The same happens with the book entity, thus
avoiding dependency duplication. Now, let's look at the same
example in iOS to verify that the behavior is different. Like in
Android, let's start by configuring our Podfile with the :home
and :checkout modules in our iOS application.

Chapter 4 - Modularization 62

import Foundation
import home
import checkout

class MainViewModel {

let bookRepository = DataBookRepository()
let processCheckout = ProcessCheckout(repository:

bookRepository)

let getAll = GetAll(repository: bookRepository)

func checkout() {

let books = getAll.invoke()
let currentBook = books.first

processCheckout.invoke(book: currentBook)

}

}

Now let's implement our previous example in Swift.

Similar to the previous example in Kotlin, we would have a
BookRepository instance that we will use in both
ProcessCheckout from the checkout framework and GetAll from
the home framework. However, let's look at the first issue in the
following image.

Chapter 4 - Modularization 63

When trying to create an instance of the DataBookRepository
class, the compiler shows an "Ambiguous use of init" error.
This occurs because the compiler cannot determine which
constructor to use, as there are two references with the same
name, as we'll see in the following images. We'll proceed by
removing the line causing the error and continue with the
implementation. This will allow us to confirm that the issue
arises because the DataBookRepository class is
simultaneously defined in both the checkout and home
frameworks.

💡
The compiler renames the BookRepository class to
DataBookRepository for use in Swift.

Chapter 4 - Modularization 64

Pods>Development Pods>home>Frameworks>home.framework>Headers>home.h

Pods>Development Pods>checkout>Frameworks>checkout.framework>Headers>checkout.h

thus showing the duplication of classes. The same happens with
the Book entity.

Chapter 4 - Modularization 65

Let's solve our problem by implementing the Umbrella module.
We'll create a :shared module that will encompass our :checkout
and :home features, allowing us to include a single framework in
iOS.

Implementing the Umbrella Module

Definition of the shared module in our project.
Chapter 4 - Modularization 66

In the 'shared' module, we will define the dependencies
mentioned above. For this, we will add the following
configuration in our build.gradle.kts file:

With this modification, the project structure will look like this.

Chapter 4 - Modularization 67

In the commonMain dependencies, we include the :home and
:checkout modules, along with the definition of our
Cocoapods framework. The respective exports allow us to
access these dependencies from our iOS code. Next, we'll see
how our Podfile is configured with the shared module.

kotlin {
 //...

 cocoapods {
 summary = "Some description for the Shared Module"
 homepage = "Link to the Shared Module homepage"
 version = "1.0"
 ios.deploymentTarget = "16.0"
 podfile = project.file("../iosApp/Podfile")
 framework {
 baseName = "shared"
 export(project(":home"))
 export(project(":checkout"))
 }
 }

 sourceSets {
 commonMain.dependencies {
 api(project(":home"))
 api(project(":checkout"))
 }
 commonTest.dependencies {
 implementation(libs.kotlin.test)
 }
 }
}

Chapter 4 - Modularization 68

To conclude the example, let's look at the implementation of
the code that previously had incompatibilities due to conflicts
between the :home and :checkout frameworks.

Chapter 4 - Modularization 69

As we can observe, it is now possible to reuse the
BookRepository instance in both ProcessCheckout and GetAll
classes, since the type definition is the same regardless of which
module it belongs to. This same behavior applies to the Book
entity, as evidenced in the checkout function.

Compilation

 compilarKotlinIosArm64 and compilarKotlinIosX64 significantly
speed up compilation time.

💡

Chapter 4 - Modularization 70

One of the main benefits of modularization is the reduction in
compilation times, as unchanged modules can be cached. In
theory, this works well, and the Android application effectively
builds faster when only some modules have been modified.
However, a challenge arises when building the Kotlin/Native
part of KMM, specifically with the gradle tasks
linkDebugFrameworkIos and linkReleaseFrameworkIos. These
tasks are time-consuming, regardless of the number of modified
modules.
Despite this, I've found that it's not always necessary to rebuild
the shared module. When making minor changes, it's enough to
build the Android application or run iOS tests in the modified
module for the changes to be reflected in the iOS application. It's
even possible that tests in other modules will also work correctly.
While there's no exact formula for this, this approach definitely
speeds up the feedback cycle when building the iOS application.
However, I believe that implementing automated tests for KMM
logic will result in an even faster and more efficient feedback
cycle than running Android or iOS applications with each
change.

Chapter 5: Testing

71

Chapter 5: Testing

Chapter 5 - Testing 72

Kotlin Multiplatform has a fundamental goal: to allow
developers to write code once and run it on multiple platforms.
However, any error in this shared code can impact all platforms
simultaneously.
As Uncle Ben said: "With great power comes great
responsibility." For this reason, testing shared code is
fundamental.
All software development needs testing to ensure code quality
and reliability. In this regard, Kotlin Multiplatform provides
various tools and options to perform effective testing across all
supported platforms.
Kotlin Multiplatform not only makes it easy to share code
between platforms but also allows writing tests that work across
all platforms we support.

Testing in Kotlin Multiplatform offers several key benefits:
Cross-platform consistency: Tests run on all supported
platforms, ensuring uniform quality across the entire
application.
Development efficiency: Writing tests once for all platforms
significantly reduces time and effort compared to creating
separate tests.
Early error detection: Automated tests identify code issues
from the start, allowing corrections before they escalate.
Greater confidence in changes: A robust test suite allows
developers to modify code safely, knowing that tests will
detect potential issues.

Benefits of Testing in Kotlin Multiplatform

Chapter 5 - Testing 73

Kotlin Multiplatform provides a range of tools and libraries for
testing across all compatible platforms. The following libraries
are available for writing tests. You can find references in the
kmp-awesome repository.

Tools for Testing in Kotlin Multiplatform

Chapter 5 - Testing 74

Kotest - test framework: Powerful, elegant and flexible test
framework for Kotlin with additional assertions, property
testing and data driven testing
Turbine - test library: A small testing library for
kotlinx.coroutines Flow
MockingBird - test framework: A Koltin multiplatform
library that provides an easier way to mock and write unit
tests for a multiplatform project
Mockative - Mocking with KSP: Mocking for Kotlin/Native
and Kotlin Multiplatform using the Kotlin Symbol
Processing API (KSP)
MocKMP - Mocking with KSP: A Kotlin/Multiplatform
Kotlin Symbol Processor that generates Mocks & Fakes.
Mokkery - Mocking library: Mokkery is a mocking library
for Kotlin Multiplatform, easy to use, boilerplate-free and
compiler plugin driven. Highly inspired by MockK.
KLIP - Snapshot manager for tests. Kotlin Multiplatform
snapshot manager for tests. Automatically generates and
asserts against a persistent Any::toString() representation of
the object until you explicitly trigger an update. Powered by
kotlin compiler plugin to inject relevant keys and paths.
Assertk - Fluent assertions library

https://github.com/terrakok/kmp-awesome#-test
https://github.com/terrakok/kmp-awesome#-test

While most of these tools are community creations, several have
achieved widespread adoption due to their popularity.
In this chapter, we'll explore some of these tools as examples.

Types of Tests
When discussing tests, we generally refer to different types,
represented in a pyramid as shown below.

As shown in the pyramid axes, the distribution is based on two
fundamental aspects of testing: execution Speed and test
Coverage. The goal of Kotlin Multiplatform is to share
business logic across multiple platforms. Since UI tests will
depend on platform- specific frameworks, we'll focus on unit
and integration tests.

Chapter 5 - Testing 75

To follow best practices, implement unit tests for the following
components:

For ViewModels or presenters.
For the data layer, especially repositories. This layer should
be mostly platform-independent, allowing test doubles to
replace databases and remote data sources.
For other platform-independent layers, such as the Domain
layer, including use cases and interactions.
For utility classes, such as string manipulation operations
and mathematical calculations.

Essential Unit Tests

Chapter 5 - Testing 76

What do we understand as a unit in our unit tests (Subject Under
Test - SUT)?

What do we mean by unit? Let's define this fundamental concept
and its principles.
There's a common tendency to establish a one-to-one
relationship between tests and classes. However, this practice
can result in fragile tests that depend too heavily on specific
implementations. The true goal isn't to achieve 100% coverage,
but to ensure our tests effectively verify code behavior.
To develop more robust tests, let's consider two essential
principles: tests should only change when business specifications
change, and code refactoring should not affect the tests.

It's important to consider this point when choosing an external library. If
it includes testing tools, it will facilitate this type of testing (we'll see this in
more detail in the example).

Integration
In this type of test, we focus on validating the interaction between
our application components in a broader context. This involves
more complex scenarios that include interactions with external
elements, such as HTTP request libraries and storage systems.

Let's see these concepts in action through a practical example: a
simple application that displays a list of Rick and Morty
characters.

How to identify the scope of our tests

Chapter 5 - Testing 77

The application consists of the following components

For the implementation, we use a ViewModel that acts as a
state container for the views. The application has two main use
cases: GetAllCharacters and RefreshCharacters, which manage
the information. The CharacterRepository implements the
repository pattern and serves as a single source of truth,
interacting with two data sources: a local one
(CharacterLocalDataSource) and a remote one
(CharacterNetworkDataSources). These components are
defined as contracts since they depend on concrete
infrastructure implementations, such as a database and an
HTTP client for server requests.

Chapter 5 - Testing 78

Before implementing the tests in our example, let's see how to
configure and run them in our project.

With these concepts clear for our application, let's look at the
scope in the following image.

Now, how do we determine the scope of our tests? Let's define
what each type represents:

Unit Test: Evaluates each use case individually, from its logic
to the interfaces, without including infrastructure
implementations.
Integration Test: Evaluates the interaction (integration) with
the infrastructure implementation.

Chapter 5 - Testing 79

Just like in shared code, we'll need specific dependencies for testing.
For this, we'll configure a dedicated sourceset/target for tests. Next,
we'll look at the necessary configuration for Android and iOS.

How to Configure and Run our Tests

kotlin{

sourceSets {
commonTest.dependencies {

implementation(kotlin("test-common"))
implementation(kotlin("test-annotations-common"))
implementation(libs.resource.test)
implementation(libs.kotlinx.coroutines.test)
implementation(libs.turbine)
implementation(libs.kotest.framework.engine)

 implementation(libs.ktor.client.mock)

implementation(libs.koin.test)
}

val androidTest = sourceSets.getByName("androidUnitTest") {

dependencies {
implementation(kotlin("test-junit"))
implementation(libs.junit)
implementation(libs.sqldelight.jvm)

}
}

iosTest.dependencies {
//ios testing dependencies

}

}

}

Chapter 5 - Testing 80

In most cases, it's not necessary to configure platform-specific
dependencies since our main goal is to validate shared code. Once
the dependencies are configured in their respective sourcesets,
we'll define the directory for tests, as shown in the following
image.

Chapter 5 - Testing 81

Tests can be executed in two ways: individually or all at once.
To run a specific test, the IDE displays a play button next to
each function marked with @Test

when pressing this button, a dropdown menu will appear that
allows you to select the platform on which you want to run
your tests

How to Run our Tests

Chapter 5 - Testing 82

Alternatively, we can run all tests using the Gradle verification
task, either from the IDE or from the command line.

This task will run all our tests across the different platforms
configured in the project. Now that we know how to configure
and run our tests, let's see how to implement them and what
approaches Kotlin Multiplatform offers.

./gradlew :shared:allTests

Chapter 5 - Testing 83

Fakes: Fakes are alternative implementations that we
develop in parallel with the real implementation.
Stubs: Stubs are similar to Fakes, but with a key difference:
they contain predefined values that don't need to be passed
as arguments when instantiating them.
Mocks: Mocks have an important conceptual difference:
besides modeling the response of the element, they allow us
to validate its interaction. This means we can verify both
behavior and collaboration between classes.

Let's start with unit tests for our use cases. Before we begin, it's
important to familiarize ourselves with some key concepts that
will help us create efficient unit tests that provide quick
feedback.

Let's Code

How to Avoid Slow and Coupled Tests

Chapter 5 - Testing 84

Let's start with the use case for updating characters in the
local data source. The following sequence diagram will help us
visualize the update flow in our code.

In our example, we'll need to create test doubles for our data
sources (DB and API). First, we'll implement them manually, and
then we'll use a mocking library. Let's start with the
implementation of CharacterLocalDataSource:

First Unit Test

class InMemoryCharacterLocalDataSource : CharacterLocalDataSource {

}

//....

Chapter 5 - Testing 85

In this implementation, we use a JsonLoader class that loads a
JSON file (which contains a copy of the real API response).
This allows us to work with realistic data during testing. To
implement this JsonLoader, we use kotlinx-resources, a library
that will be very useful in our upcoming tests. This tool makes
it easy to load files from the local project directory.

An in-memory implementation will store the information only
during the test context. And for our CharacterNetworkDataSource
we will create a Fake implementation.

class FakeCharacterNetworkDataSource : CharacterNetworkDataSource {

private val jsonLoader = JsonLoader()

override suspend fun find(id: Long): Result<NetworkCharacter> {

return all().fold(onSuccess = { characters ->
runCatching { characters.first { it.id == id } }

}, onFailure = { Result.failure(it) })
}

override suspend fun all(): Result<List<NetworkCharacter>> {
return runCatching {

jsonLoader.load<CharactersResponse>("characters.json").results

}

}
}

Chapter 5 - Testing 86

https://github.com/goncalossilva/kotlinx-resources/tree/main
https://github.com/goncalossilva/kotlinx-resources/tree/main
https://github.com/goncalossilva/kotlinx-resources/tree/main

This avoids having to create complex instances and manually
generate data for tests.

class JsonLoader {

private val json = Json {
ignoreUnknownKeys = true

}

fun load(file: String): String {
val loader = Resource("src/commonTest/resources/${file}")
return loader.readText()

}

internal inline fun <reified R : Any> load(file: String) =
this.load(file).convertToDataClass<R>()

 internal inline fun <reified R : Any>
String.convertToDataClass(): R {

return json.decodeFromString<R>(this)
}

}

💡 Tip: To improve the above, we could apply the Object Mother
Pattern, which will allow us to have more readable, maintainable,
and quickly generated tests.

There are several strategies for managing test instances:

Traditional
Builder Pattern

Object Mother

Named Arguments

Chapter 5 - Testing 87

💡Another alternative would have been to create a test double for our
repository, but as we saw earlier, we only create test doubles for those
components that have external dependencies, such as input/output
operations.

First, we create the necessary instances for our tests: the object
under test and the repository. The CharacterRepository and
RefreshCharacters classes are real implementations, not
mocked.

Once the instances are generated, we define the test. Here we can
use the Given-When-Then pattern to structure the test, invoke
the use case, and perform the assertion on the datasource. In this
case, since we use Flow, we are using Turbine to interact with
flows during testing.

Now that we have our test doubles ready, let's implement the first
test to validate the successful case.

class RefreshCharactersTest {

private val networkDataSource = FakeCharacterNetworkDataSource()
private val localDataSource = InMemoryCharacterLocalDataSource()
private val repository = CharacterRepository(localDataSource,

networkDataSource)

 private val refreshCharacters = RefreshCharacters(repository)

@AfterTest
fun tearDown() {

localDataSource.clear()
}

@Test
fun `When I call refresh update the local storage`() = runTest {

}

// test code
}

Chapter 5 - Testing 88

https://github.com/cashapp/turbine
https://github.com/cashapp/turbine

class RefreshCharactersTest {

 private val networkDataSource =
FakeCharacterNetworkDataSource()
 private val localDataSource =
InMemoryCharacterLocalDataSource()
 private val repository =
CharacterRepository(localDataSource, networkDataSource)

 private val refreshCharacters =
RefreshCharacters(repository)

@AfterTest
fun tearDown() {

localDataSource.clear()
}

@Test
fun `When I call refresh update the local storage`() =

runTest {

}

//Given
//When
refreshCharacters.invoke()
//Then
localDataSource.all.test {

assertEquals(true, awaitItem().isNotEmpty())
}

}

But how do we validate the case when the NetworkDataSource
returns an empty response? For this, we need to modify our
data source. The solution is to implement a stub.

Chapter 5 - Testing 89

And the test would look like this
class RefreshCharactersTest {

class StubCharacterNetworkDataSource(
 private val characters: MutableList<NetworkCharacter> =
mutableListOf()
) : CharacterNetworkDataSource {

fun setCharacters(characters: List<NetworkCharacter>) {

this.characters.clear()
this.characters.addAll(characters)

} override suspend fun find(id: Long): Result<NetworkCharacter>
{

return all().fold(onSuccess = { characters ->
runCatching { characters.first { it.id == id } }

}, onFailure = { Result.failure(it) })
}

}

override suspend fun all(): Result<List<NetworkCharacter>> {
return runCatching { characters }

}

 private val characters =
JsonLoader.load<CharactersResponse>("characters.json").results
 private val networkDataSource =
StubCharacterNetworkDataSource(characters.toMutableList())

private val localDataSource = InMemoryCharacterLocalDataSource()
private val repository = CharacterRepository(localDataSource,

networkDataSource)

 private val refreshCharacters = RefreshCharacters(repository)

@Test
fun `When I call refresh update the local storage`() = runTest {

refreshCharacters.invoke()
localDataSource.all.test {

assertEquals(true, awaitItem().isNotEmpty())
}

}

}

@Test
fun `When the service returns an empty response`() = runTest {

networkDataSource.setCharacters(emptyList())
refreshCharacters.invoke()
localDataSource.all.test {

assertEquals(true, awaitItem().isEmpty())
}

}

Chapter 5 - Testing 90

Let's see how to replace our mocks using Mokkery

As we need to generate different test scenarios, it's essential to
have more flexible mocks. However, we must remember that
this code also requires maintenance. For this reason, it's
convenient to use mocking libraries like Mockk or Mockito,
which will be familiar to Android developers. While Kotlin
Multiplatform doesn't yet have solutions as established as
these, they have served as inspiration for the community. In
our example, we'll use Mokkery, a library inspired by Mockk
according to its documentation.

Mockk is a mocking library implemented entirely in Kotlin that,
according to its documentation, offers multiplatform support. However,
it still has some issues with native platforms like iOS and macOS.

💡

Chapter 5 - Testing 91

https://mockk.io/
https://site.mockito.org/
https://mockk.io/
https://mockk.io/
https://mockk.io/
https://site.mockito.org/
https://mokkery.dev/
https://mokkery.dev/
https://mokkery.dev/

private val networkDataSource = mock<CharacterNetworkDataSource>()

import dev.mokkery.answering.returns
import dev.mokkery.everySuspend
import dev.mokkery.mock

class RefreshCharactersTest {

private val characters = CharactersResponseMother.characters()
private val networkDataSource =

mock<CharacterNetworkDataSource>()

private val localDataSource = InMemoryCharacterLocalDataSource()
private val repository = CharacterRepository(localDataSource,

networkDataSource)

 private val refreshCharacters = RefreshCharacters(repository)

@Test
fun `When I call refresh update the local storage`() = runTest {

//Given
everySuspend {

networkDataSource.all()
} returns Result.success(characters)
//When
refreshCharacters.invoke()
//Then
localDataSource.all.test {

assertEquals(true, awaitItem().isNotEmpty())
}

}

}

@Test
fun `When the service returns an empty response`() = runTest {

//Given
everySuspend {

networkDataSource.all()
} returns Result.success(emptyList())
//When
refreshCharacters.invoke()
//Then
localDataSource.all.test {

assertEquals(true, awaitItem().isEmpty())
}

}

With Mokkery, we can create a mock of the
CharacterNetworkDataSource interface in the following way:

Chapter 5 - Testing 92

and configure the behavior of its methods

Thanks to Mokkery, we can now test the remaining cases more
efficiently and clearly.

With a mocking library, we can also easily perform other types
of verifications, such as checking that the all method of
networkDataSource was called exactly once.

everySuspend {
networkDataSource.all()

} returns Result.success(characters)

It is recommended to generate mocks only for interfaces that are coupled to
external data sources, as we saw in the previous example.

Setup | Mokkery
How to add Mokkery to your Gradle project rapidly!

https://mokkery.dev/docs/Setup

 @Test
 fun `When I call refresh update the local storage`() =
runTest {
 //Given
 everySuspend {
 networkDataSource.all()
 } returns Result.success(characters)
 //When
 refreshCharacters.invoke()
 //Then
 verifySuspend(mode = exactly(1)) {
 networkDataSource.all()
 }
 localDataSource.all.test {
 assertEquals(true, awaitItem().isNotEmpty())
 }
 }

Chapter 5 - Testing 93

https://mokkery.dev/docs/Setup
https://mokkery.dev/docs/Setup

As shown in the initial diagram, we will validate the integration
of components and their behavior.

Integration tests allow us to validate the infrastructure, that
is, the external libraries we use to manage our data. In our
case, we use Ktor for HTTP requests and SQLDelight for
local storage. Both libraries provide specific tools for testing.

Integration Tests

Chapter 5 - Testing 94

Testing with Ktor

Ktor provides an Engine that allows us to create simulations of
our services. The implementation is simple: we just need to
define an Engine of type MockEngine and incorporate it into
our client configuration.

To facilitate testing with Ktor, we will create some simple
abstractions that will allow us to reuse configurations across all
our tests. We will implement the following code to configure the
Mock engine for testing.

val mockEngine = MockEngine { request ->

respond(
content = ByteReadChannel("""{"ip":"127.0.0.1"}"""),
status = HttpStatusCode.OK,
headers = headersOf(HttpHeaders.ContentType,

"application/json")

}

)

Chapter 5 - Testing 95

You can find the complete code in the file MockClient.kt.
Now let's see how to implement our integration tests

fun testKtorClient(mockClient: MockClient = MockClient()):
HttpClient {

}

val engine = testKtorEngine(mockClient)
return HttpClient(engine) {

install(ContentNegotiation) {
json(Json {

prettyPrint = true
isLenient = true
ignoreUnknownKeys = true

})
}

}

private fun testKtorEngine(interceptor: ResponseInterceptor)
= MockEngine { request ->

val response = interceptor(request)
respond(

content = ByteReadChannel(response.content),
status = response.status,
headers = headersOf(HttpHeaders.ContentType,

"application/json")

}

)

Chapter 5 - Testing 96

class RefreshCharactersIntegrationTest {

private val jsonResponse = JsonLoader.load("characters.json")
//KtorClient setup
private val mockClient = MockClient()
private val ktorClient = testKtorClient(mockClient)
private val networkDataSource =

KtorCharacterNetworkDataSource(ktorClient)

private val localDataSource = InMemoryCharacterLocalDataSource()
private val repository = CharacterRepository(localDataSource,

networkDataSource)

 private val refreshCharacters = RefreshCharacters(repository)

@AfterTest
fun tearDown() {

localDataSource.clear()
}

@Test
fun `When I call refresh update the local storage`() = runTest {

//Given
val response = DefaultMockResponse(jsonResponse,

HttpStatusCode.OK)

mockClient.setResponse(response)
//When
refreshCharacters.invoke()
//Then
localDataSource.all.test {

assertEquals(true, awaitItem().isNotEmpty())
}

}

In the test, we will create an instance of
KtorCharacterNetworkDataSource, which concretely
implements our CharacterNetworkDataSource interface. This
time we will initialize it with a special HttpClient for testing that
uses MockEngine.

Chapter 5 - Testing 97

Testing with SQLDelight

SQLDelight can be used for testing, but it requires platform-
specific configuration. In its implementation, we need to define
an appropriate driver for each platform.

// database.common.kt expect class DriverFactory {

Let's apply the same approach to our CharacterLocalDataSource.

Testing | Ktor
Ktor provides a MockEngine that simulates HTTP calls without
connecting to the endpoint.
https://ktor.io/docs/client-testing.html

}

fun createDriver(): SqlDriver

fun createDatabase(driver: SqlDriver): CharactersDatabase {

}

return CharactersDatabase(driver)

// database.android.kt
actual class DriverFactory(private val context: Context) {

actual fun createDriver(): SqlDriver {
return AndroidSqliteDriver(CharactersDatabase.Schema,

context, "app_database.db")

}

}

//database.ios.kt
actual class DriverFactory {

actual fun createDriver(): SqlDriver {
return NativeSqliteDriver(CharactersDatabase.Schema,

"app_database.db")

}

}

Chapter 5 - Testing 98

https://ktor.io/docs/client-testing.html
https://ktor.io/docs/client-testing.html
https://ktor.io/docs/client-testing.html
https://ktor.io/docs/client-testing.html

Let's implement this change in our test.

As we can observe, this library uses a similar concept to what
we implemented in our InMemoryCharacterLocalDataSource,
which is an in-memory implementation.

In our case, we have a DriverFactory class implemented in both
Android and iOS, each with its specific drivers. For testing, we
follow the same principle, but apply it to the source code sets
intended for tests.

//test.database.common.kt
expect fun testDbDriver(): SqlDriver

//test.database.android.kt
actual fun testDbDriver(): SqlDriver {
 return JdbcSqliteDriver(JdbcSqliteDriver.IN_MEMORY)
 .also {
 CharactersDatabase.Schema.create(it)
 }
}
//test.database.ios.kt
actual fun testDbDriver(): SqlDriver {
 return inMemoryDriver(CharactersDatabase.Schema)
}

Chapter 5 - Testing 99

class RefreshCharactersIntegrationTest {

 private val jsonResponse = JsonLoader.load("characters.json")

//KtorClient setup
private val mockClient = MockClient()
private val ktorClient = testKtorClient(mockClient)
private val networkDataSource =

KtorCharacterNetworkDataSource(ktorClient)

//SQLDelight setup
private val db = createDatabase(driver = testDbDriver())
private val localDataSource =

SQLDelightCharacterLocalDataSource(db)
 private val repository = CharacterRepository(localDataSource,

networkDataSource)

 private val refreshCharacters = RefreshCharacters(repository)

@Test
fun `When I call refresh update the local storage`() = runTest {

//Given
val response = DefaultMockResponse(jsonResponse,

HttpStatusCode.OK)

mockClient.setResponse(response)
//When
refreshCharacters.invoke()
//Then
localDataSource.all.test {

assertEquals(true, awaitItem().isNotEmpty())

}
}

@Test
fun `When the service returns an empty response`() = runTest {

//Given
val response = DefaultMockResponse("{}", HttpStatusCode.OK)
mockClient.setResponse(response)
//When
refreshCharacters.invoke()

localDataSource.all.test {

assertEquals(true, awaitItem().isEmpty())
}

}

} Chapter 5 - Testing 100

After defining our dependencies, we configure the test to use
Koin.

Similar to Ktor, we use instances of our local storage
implementation, SQLDelightCharacterLocalDataSource.

So far, we have validated all components of the use case through
our tests. Now, let's see how we can improve the code in our
project and measure its coverage.

Validating our Dependency Injection

In integration tests, we make minimal adjustments to external
library configurations to adapt them to testing needs.
However, this process can become repetitive for each use case.
This is where dependency injection and Koin help us optimize
these configurations. The first step is to configure our test
dependencies with Koin.

Testing: SQLDelight
SQLDelight - Generates typesafe Kotlin APIs from SQL
https://cashapp.github.io/sqldelight/2.0.0/android_sqlite/testing/

val testPlatformModule: Module = module {

}

single<SqlDriver> { testDbDriver() }
single<MockClient> { MockClient() }
single<HttpClient> { testKtorClient(get()) }

Chapter 5 - Testing 101

https://cashapp.github.io/sqldelight/2.0.0/android_sqlite/testing/
https://cashapp.github.io/sqldelight/2.0.0/android_sqlite/testing/
https://sqldelight.github.io/sqldelight/2.0.2/android_sqlite/testing/

class RefreshCharactersIntegrationTest : KoinTest {

 private val jsonResponse =
JsonLoader.load("characters.json")

//KtorClient setup
private val mockClient: MockClient by inject()

@BeforeTest
fun setUp() {

startKoin {
modules(

testPlatformModule,
sharedModule

)
}

}

@AfterTest
fun tearDown() {

stopKoin()
}

@Test
fun `When I call refresh update the local

storage`() = runTest {

}

//.....
}

and in our test we request an instance of the object under
test, in this case RefreshCharacters

Chapter 5 - Testing 102

@Test
fun `When I call refresh update the local

storage`() = runTest {

koin

//Given
val useCase = get<RefreshCharacters>() //from

val localDataSource =
get<CharacterLocalDataSource>()

val response = MockResponse.ok(jsonResponse)
mockClient.setResponse(response)
//When
useCase.invoke()
//Then
localDataSource.all.test {
assertEquals(true,

awaitItem().isNotEmpty())

}
}

Test coverage metrics indicate what percentage of code has been
tested, being fundamental to evaluate test quality and identify
areas without coverage. While these metrics don't guarantee the
complete absence of errors, tools like Jacoco and Slather allow
us to calculate them and integrate them into the development
cycle. In Kotlin Multiplatform, we'll use Kover, a Gradle plugin
similar to Jacoco.

Coverage Metrics

Chapter 5 - Testing 103

Kover is a toolset designed to measure test coverage of Kotlin
code compiled for JVM and Android platforms. Its main
component is a Gradle plugin that we'll explore next.

Kover Features

Code coverage measurement through JVM tests
(important: no support yet for JS and native targets).
Report generation in HTML and XML formats.
Compatibility with Kotlin JVM and Kotlin Multiplatform
projects.
Support for Kotlin Android projects with build variants
(note: instrumentation tests on Android devices are not yet
supported).
Compatibility with mixed Kotlin and Java code.
Configuration of verification rules with coverage
thresholds in the Gradle plugin.
Integration with JaCoCo library as an alternative for
measuring coverage and generating reports.

Kover

Chapter 5 - Testing 104

To implement Kover in our project, we only need to add its

Gradle plugin:

Once the plugin is added, we'll be able to run the Kover tasks
available in Gradle.

plugins {

}

id("org.jetbrains.kotlinx.kover") version "0.7.6"

Chapter 5 - Testing 105

In this case we will execute

To generate the HTML report shown below

./gradlew :shared:koverHtmlReport

Chapter 5 - Testing 106

You can configure coverage limits in your projects using Kover
by defining custom rules. For example:

Chapter 5 - Testing 107

koverReport {

verify {
rule("Basic Line Coverage") {

isEnabled = true
bound {

minValue = 80 // Minimum coverage percentage
maxValue = 100 // Maximum coverage

percentage (optional)

metric = MetricType.LINE
aggregation =

AggregationType.COVERED_PERCENTAGE

}
}

for branches

}

rule("Branch Coverage") {
isEnabled = true
bound {

minValue = 70 // Minimum coverage percentage

metric = MetricType.BRANCH
}

}
}

Although Kover is in Alpha version and does not yet
support Kotlin Native, it is useful for validating our shared
code.

Chapter 5 - Testing 108

To ensure effective testing in Kotlin Multiplatform, we can
follow these software development best practices:

Write tests from the start: Beginning with tests early in
development helps detect problems early and builds a solid
testing foundation.
Automate testing: Automation ensures consistent execution
and minimizes human error.
Use parameterized tests: These tests allow evaluation of
multiple data sets with a single test case, improving
maintainability. For this we can use Kotest.
Separate tests from implementations: Keeping test code
separate from production code improves organization and
facilitates future changes.

Best Practices for Testing in Kotlin
Multiplatform

Chapter 5 - Testing 109

When implementing tests in Kotlin Multiplatform
applications, consider these important guidelines:

For common code, use only multiplatform libraries like
kotlin.test. Add dependencies to the commonTest set.
The Asserter type from kotlin.test should be used indirectly.
Although the instance is visible, avoid using it directly in
tests.
Stick to the testing library API. The compiler and IDE will
help you avoid framework-specific features.
When using commonTest, run your tests with each planned
framework to verify correct environment setup.
For platform-specific code, take advantage of the
framework's native features, including annotations and
extensions.
Tests can be run from the IDE or through Gradle tasks.
Test execution automatically generates HTML reports.

Rules for Using Tests in Multiplatform Projects

GitHub - santimattius/kmp-for-mobile-native-developers
at unit_and_integration_testing
KMP for Mobile Native Developers

Chapter 5 - Testing 110

https://github.com/santimattius/kmp-for-mobile-native-developers/tree/unit_and_integration_testing
https://github.com/santimattius/kmp-for-mobile-native-developers/tree/unit_and_integration_testing

Chapter 6: Using Native
Libraries in Kotlin Multiplatform

111

Chapter 6: Using Native Libraries in Kotlin
Multiplatform

The adoption of Kotlin Multiplatform represents a strategic
step towards more coherent cross-platform development. This
technology allows sharing code and business logic, reducing
work duplication and improving consistency between
applications. When starting projects with KMP for Android and
iOS, a practical approach is to adapt and integrate existing
native solutions into the KMP module, rather than rewriting
everything from scratch. This strategy allows us to leverage both
KMP functionalities and platform-specific code. In this section,
we'll explore how to extend the Bugsnag SDK for use from
KMP modules, both in Android and iOS. We'll start with the
integration of existing native SDKs, focusing on avoiding
unnecessary rewrites.

How do we include Android or iOS specific code in a KMP
module?

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 112

To add Android-specific dependencies to a Kotlin Multiplatform
module, the process is identical to traditional Android projects.
We just need to add the dependency in the Android source set
within the build.gradle(.kts) file in the shared directory. In this
example, we'll implement Bugsnag and Android Startup, two
platform-exclusive dependencies for Android.

Using Android Dependencies in KMP

kotlin {

sourcesets{
commonMain.dependencies{

// common dependencies
}
androidMain.dependencies {

api(libs.bugsnag.android)

implementation(libs.androidx.startup.runtime)

}

}
}

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 113

Once these dependencies are configured, we can use them within
the Android sourceset.
Next, we'll explore the configuration of iOS-specific
dependencies. Then we'll return to the implementation after
having the dependencies configured on both platforms.

Apple SDK dependencies like Foundation or Core Bluetooth are
precompiled in Kotlin Multiplatform projects and require no
additional configuration. You can reuse libraries and frameworks
from the iOS ecosystem in your iOS sourcesets. Kotlin is
compatible with Objective-C and Swift dependencies, as long as
they expose their APIs to Objective-C using the @objc attribute.
However, Swift-only dependencies are not yet supported.
CocoaPods integration has the same limitation: it doesn't support
Swift-only pods. To manage iOS dependencies in Kotlin
Multiplatform projects, we recommend using CocoaPods. You
should only manage dependencies manually if you need to
customize the interoperability process or have a specific reason to
do so. In our case, we'll use CocoaPods. To begin, we need to
configure the CocoaPods plugin in our KMP project:

How to Use iOS Dependencies in KMP

[versions]
kotlin = "your-kotlin-version"

[plugins]
cocoaPods = { id =
"org.jetbrains.kotlin.native.cocoapods", version.ref =
"kotlin" }

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 114

https://kotlinlang.org/docs/multiplatform-ios-dependencies.html#with-cocoapods
https://kotlinlang.org/docs/multiplatform-ios-dependencies.html#without-cocoapods
https://kotlinlang.org/docs/multiplatform-ios-dependencies.html#with-cocoapods
https://kotlinlang.org/docs/multiplatform-ios-dependencies.html#without-cocoapods

With the CocoaPods plugin installed, we can configure our
shared module as a pod and define the necessary dependencies.
For this example, we'll use Bugsnag as a native library.

Next, we'll apply the CocoaPods plugin in both the root
project and the shared module.

//root build.gradle.kts
plugins {
 alias(libs.plugins.androidApplication) apply false
 alias(libs.plugins.androidLibrary) apply false
 alias(libs.plugins.kotlinMultiplatform) apply false
 alias(libs.plugins.jetbrainsKotlinAndroid) apply
false
 alias(libs.plugins.cocoaPods) apply false
}

//shared module build.gradle.kts
plugins {
 alias(libs.plugins.kotlinMultiplatform)
 alias(libs.plugins.cocoaPods)
 alias(libs.plugins.androidLibrary)
}

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 115

Now that we have configured the dependencies for both
platforms, let's see how to reuse these native APIs through Kotlin
Multiplatform.

kotlin{
cocoapods {

module"

version = "1.0"
summary = "Some description for a Kotlin/Native

homepage = "Link to a Kotlin/Native module homepage"
name = "Shared"
ios.deploymentTarget = "14.0"

framework {
baseName = "Shared"
isStatic = false

}

}

pod("Bugsnag"){
version = "6.28.0"

}
}

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 116

Expect/Actual

Kotlin provides an elegant mechanism to access platform-
specific APIs while developing common logic: expect and actual
declarations. The mechanism is simple: the common source set
of a multiplatform module defines an expect declaration, and
each platform source set provides its corresponding actual
declaration. The compiler verifies that each declaration marked
with the expect keyword in the common sources has its
corresponding declaration marked with actual in all target
platforms. This system works with most Kotlin declarations:
functions, classes, interfaces, enums, properties, and
annotations. In this section, we'll focus on using expect/actual
functions and properties.

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 117

https://kotlinlang.org/docs/multiplatform-expect-actual.html
https://kotlinlang.org/docs/multiplatform-expect-actual.html
https://kotlinlang.org/docs/multiplatform-expect-actual.html
https://kotlinlang.org/docs/multiplatform-expect-actual.html

Now let's look at the practical application of this concept using
the Bugsnag API as an example.

The diagram above shows the general concept of our
implementation. Let's now look at the code in detail. In
commonMain, we'll define the expect declarations for our API
functions, ensuring consistency across platforms. Bugsnag
represents an ideal case, as it maintains consistent nomenclature
in its APIs for both Android and iOS, from method signatures to
entity structures.

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 118

// bugsnag.common.kt
package com.santimattius.kmp.playground

//SDK configurations
expect class Configuration
// Information track
expect class TrackableException

object Bugsnag {

 private val provider: PlatformTracker = PlatformTracker()

fun initialize(config: Configuration) {
provider.initialize(config)

}

}

fun track(exception: TrackableException) {
provider.track(exception)

}

internal expect class PlatformTracker(){

}

fun initialize(config: Configuration)
fun track(exception: TrackableException)

Let's look at the Android implementation.

In the androidMain sourceset, we'll implement concrete
versions of the classes defined in the shared code. For the
entities Configuration and TrackableException, we'll use
typealias as a specific solution. Let's look at this
implementation in detail.

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 119

https://kotlinlang.org/docs/type-aliases.html
https://kotlinlang.org/docs/type-aliases.html
https://kotlinlang.org/docs/type-aliases.html

This is where we directly use Android dependencies.

As we can observe in the imports, the typealias acts as direct
references to the native API entities.

package com.santimattius.kmp.playground

import com.bugsnag.android.Bugsnag
import com.bugsnag.android.Configuration as
BugsnagConfiguration

actual typealias Configuration = BugsnagConfiguration
actual typealias TrackableException = Throwable

internal actual class PlatformTracker {

actual fun initialize(config: Configuration) {
val context = applicationContext ?: run {

// TODO: add logging later
return

}
Bugsnag.start(context, config)

}

}

actual fun track(exception: TrackableException) {
Bugsnag.notify(exception)

}

import com.bugsnag.android.Bugsnag
import com.bugsnag.android.Configuration as BugsnagConfiguration

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 120

After defining the initializer, we need to register it in the
AndroidManifest. To do this, we'll first create this file in our
androidMain directory.

Among the Android-specific dependencies we defined earlier,
we find Android Startup. Kotlin Multiplatform's flexibility to
implement platform-specific code allows us to apply an elegant
solution: Bugsnag needs Android's applicationContext to work
during application startup. Through Android Startup, we can
obtain this context and, if desired, initialize our library. The
solution involves implementing an Android Startup Initializer
to capture the applicationContext.

How can we get the Android Context in KMP?

int ernal var applicationContext: Context? = null

 private set

class ContextInitializer: Initializer<Unit> {

override fun create(context: Context) {
applicationContext = context.applicationContext

}

 override fun dependencies(): List<Class<out
Initializer<*>>> {

}

return emptyList()
}

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 121

https://developer.android.com/topic/libraries/app-startup

In the AndroidManifest.xml file, we need to add the following
configuration:

To use Bugsnag in Android, we just need to reference our
Bugsnag object from the application. Let's see an example:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools">

<application>
<provider

android:name="androidx.startup.InitializationProvider"
android:authorities="${applicationId}.androidx-startup"
android:exported="false"
tools:node="merge">
<meta-data

android:name="com.santimattius.kmp.playground.ContextInitializer"

android:value="androidx.startup" />
</provider>

</application>

</manifest>

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 122

import android.app.Application
import com.santimattius.kmp.playground.Bugsnag
import com.santimattius.kmp.playground.Configuration

class MainApplication : Application() {

override fun onCreate() {
super.onCreate()
// Initialization
Bugsnag.initialize(config = Configuration.load(this))
// Send test exception
Bugsnag.track(exception = Throwable(message = "This is

a test!!"))

}

}

Next, we'll look at the iOS implementation.

Thanks to the alias definitions, we can use native APIs directly
from our Kotlin Multiplatform module, as shown in our import
declarations.

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 123

import cocoapods.Bugsnag.Bugsnag
import cocoapods.Bugsnag.BugsnagConfiguration
import kotlinx.cinterop.ExperimentalForeignApi
import platform.Foundation.NSException

package com.santimattius.kmp.playground

import cocoapods.Bugsnag.Bugsnag
import cocoapods.Bugsnag.BugsnagConfiguration
import kotlinx.cinterop.ExperimentalForeignApi
import platform.Foundation.NSException

@OptIn(ExperimentalForeignApi::class)
actual typealias Configuration = BugsnagConfiguration
actual typealias TrackableException = NSException

@OptIn(ExperimentalForeignApi::class)
internal actual class PlatformTracker {

actual fun initialize(config: Configuration) {
Bugsnag.startWithConfiguration(config)

}

}

actual fun track(exception: TrackableException) {
Bugsnag.notify(exception)

}

Looking at the imports, we can see that our definitions use
native APIs provided by both the iOS platform and Bugsnag.

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 124

import SwiftUI
import Shared
import Bugsnag

@main
struct iOSApp: App {

init() {

// Initialization
let config = BugsnagConfiguration.loadConfig()
config.appVersion = "1.0.0-alpha"

Bugsnag.shared.initialize(config: config)
// Send test exception
let exception =

NSException(name:NSExceptionName(rawValue: "NamedException"),

reason:"Something happened",
userInfo:nil)

Bugsnag.shared.track(exception: exception)
}

var body: some Scene {

WindowGroup {
ContentView()

}
 }
}

Just like in Android, we're using the platform's native types, but
this time accessing them through our Shared module.
Our Kotlin Multiplatform solution is ready! 🎉

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 125

Can we use our Bugsnag SDK adaptation from a Kotlin
Multiplatform module? The answer is yes. In fact, making existing
functionality accessible from our KMP modules is one of the
main benefits driving the adoption of this technology. To better
understand how it works, let's analyze a practical example with a
repository.

Can we use it from a Kotlin Multiplatform
module?

class CrashRepository {

 private val coroutineScope =
CoroutineScope(Dispatchers.Default)

suspend fun crash() {

>

val handler = CoroutineExceptionHandler { _, exception -

println("CoroutineExceptionHandler got $exception")
// send log to bugsnag
Bugsnag.track(exception.asTrackableException())

 }

 val job = coroutineScope.launch(handler) { // root
coroutine, running in GlobalScope

throw AssertionError()
}

 val deferred = coroutineScope.async(handler) { // also
root, but async instead of launch
 throw ArithmeticException() // Nothing will be
printed, relying on user to call deferred.await()
 }

}

joinAll(job, deferred)
}

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 126

To implement this conversion, we create a Throwable extension
function with platform-specific implementations.

This is a deliberate example of how to generate an exception
😀 . Our goal is to capture this exception using
CoroutineExceptionHandler and report it to Bugsnag through
our SDK adaptation. For this, we need to transform the
exception to the TrackableException type.

While we could have directly used the Throwable type in the track
function signature since it's native to Kotlin, we chose to define the
TrackableException type to achieve a clearer and more expressive
API.

//bugsnag.common.kt
expect fun Throwable.asTrackableException():
TrackableException

//bugsnag.android.kt
actual fun Throwable.asTrackableException() = this

//bugsnag.ios.kt
actual fun Throwable.asTrackableException() =
NSException.exceptionWithName(

)

name = this::class.simpleName,
reason = message ?: toString(),
userInfo = null

💡

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 127

Allows reusing existing solutions for MVP in KMP
Maintains developer experience, especially for those
coming from Android, by preserving familiar API
definitions Facilitates early adoption of KMP Promotes
robust and synchronized design between native solutions

APIs may have inconsistent designs across platforms
Increases maintenance cost by adding a new technology
stack
Changes in native APIs require adjustments in KMP
adaptation
Cross-platform adaptation presents specific challenges: in
Android, Java-
Kotlin interoperability, and in iOS, converting Swift code
not compatible with
Objective-C

In Android, since TrackableException is an alias for Throwable,
the extension simply returns the original exception. In iOS, we
create a new NSException that encapsulates the error
information. With this complete implementation, let's analyze
its advantages and disadvantages.

Pros

Cons

Pros and Cons

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 128

GitHub - santimattius/kmp-native-api-
playground

https://github.com/santimattius/kmp-native-api-

playground

In my opinion, these solutions should be limited to specific cases,
such as external integrations without native KMP support. It's
important to evaluate the cost of rewriting these modules.
Although interoperability works in both directions (we can use
native dependencies in KMP and vice versa), it's better to avoid
duplicate solutions. Software development experience has taught
us the problems caused by code duplication.

Chapter 6 - Using Native Libraries in Kotlin Multiplatform 129

https://github.com/santimattius/kmp-native-api-playground
https://github.com/santimattius/kmp-native-api-playground
https://github.com/santimattius/kmp-native-api-playground

Chapter 7: Libraries

130

Chapter 7: Libraries

In Kotlin Multiplatform application development, it's essential
to have a robust set of libraries that facilitate common tasks such
as networking, data storage, and state management. These
libraries are specifically designed to work consistently across all
platforms supported by KMP, allowing developers to maintain a
single codebase while leveraging native capabilities of each
platform. Below, we'll explore some of the most popular and
proven libraries in the KMP community, organized by categories
according to their main functionality. These tools have been
selected based on their maturity, active support, and adoption in
real projects.

Networking libraries are fundamental for creating applications
that work on both Android and iOS using Kotlin Multiplatform.
These libraries allow both platforms to communicate with the
Internet using the same code. Let's look at the best available
libraries for making network connections in Kotlin
Multiplatform:

Networking

Chapter 7 - Libraries 131

Ktor is an open-source framework for creating web and
server applications in Kotlin. Ktor Client is a component of
Ktor used to make HTTP requests from a Kotlin
multiplatform application. With Ktor Client, you can make
HTTP requests from your shared code across compatible
platforms. Ktor Client provides a declarative and fluid API
for making HTTP requests simply and efficiently, making it
suitable for developing multiplatform applications that need
to interact with web services. You can use Ktor Client to
make GET, POST, PUT, DELETE, and other HTTP
operations, as well as easily handle headers, parameters, and
request and response data.

Ktor

internal fun apiClient(baseUrl: String) = HttpClient {

 install(ContentNegotiation) {
 json(Json {
 prettyPrint = true
 isLenient = true
 ignoreUnknownKeys = true
 })
 }
 install(Logging) {
 logger = Logger.DEFAULT
 level = LogLevel.ALL
 }

 defaultRequest {
 url(baseUrl)
 contentType(ContentType.Application.Json)
 }
}

Chapter 7 - Libraries 132

//using ktor client
class KtorRemoteMoviesDataSource(
 private val client: HttpClient,
) : RemoteMoviesDataSource {

 override suspend fun getMovies():
Result<List<MovieDto>> = runCatching {

}

// invoke service
val response = client.get("movie/popular")
val result = response.body<MovieResponse>()
result.results

}

For more information on how to use Ktor in your Kotlin
Multiplatform projects, you can check the official Ktor
documentation.

Creating a cross-platform mobile application | Ktor
The Ktor HTTP client can be used in multiplatform projects. In this
tutorial, we'll create a simple Kotlin Multiplatform Mobile
application, which sends a request and receives a response body as
plain HTML text.

https://ktor.io/docs/getting-started-ktor-client-multiplatform-mobile.html#code

Chapter 7 - Libraries 133

https://ktor.io/docs/getting-started-ktor-client-multiplatform-mobile.html
https://ktor.io/docs/getting-started-ktor-client-multiplatform-mobile.html
https://ktor.io/docs/getting-started-ktor-client-multiplatform-mobile.html
https://ktor.io/docs/getting-started-ktor-client-multiplatform-mobile.html
https://ktor.io/docs/getting-started-ktor-client-multiplatform-mobile.html#code
https://ktor.io/docs/getting-started-ktor-client-multiplatform-mobile.html#code
https://ktor.io/docs/getting-started-ktor-client-multiplatform-mobile.html#code
https://ktor.io/docs/getting-started-ktor-client-multiplatform-mobile.html#code

For a complete example, you can check out this Github
repository: https://github.com/santimattius/kmp-networking

Ktorfit is a HTTP client/Kotlin Symbol Processor for Kotlin
Multiplatform  Android, iOS, Js, Jvm, Linux) using KSP and
Ktor clients inspired by Retrofit.

For more information about Ktorfit and how to use it in your
projects, you can check the official Ktorfit documentation
https://foso.github.io/Ktorfit/

Ktorfit

class ServiceCreator(baseUrl: String) {

 private val client = HttpClient {
 install(ContentNegotiation) {
 json(Json { isLenient = true; ignoreUnknownKeys = true
})
 }
 }
 private val ktorfit = Ktorfit.Builder()
 .baseUrl(baseUrl)
 .httpClient(client)
 .build()

 fun createPictureService() = ktorfit.create<PictureService>()
}

interface PictureService {

 @GET("random")
 suspend fun random(): Picture
}

Chapter 7 - Libraries 134

https://github.com/google/ksp
https://ktor.io/docs/getting-started-ktor-client.html
https://square.github.io/retrofit/
https://github.com/google/ksp
https://ktor.io/docs/getting-started-ktor-client.html
https://square.github.io/retrofit/
https://foso.github.io/Ktorfit/
https://foso.github.io/Ktorfit/
https://foso.github.io/Ktorfit/
https://foso.github.io/Ktorfit/

Mobile applications need to store information on the device.
Kotlin Multiplatform makes this easier by providing tools
that work the same way on both Android and iOS. Let's look
at the best available tools for storing data in Kotlin
Multiplatform, starting with how to handle user preferences.

Datastore
Jetpack Datastore is a data storage solution that allows you to
store key-value pairs or objects written with protocol buffers.
Datastore uses Kotlin coroutines and Flow to store data
asynchronously, consistently, and transactionally. If you
currently use SharedPreferences to store data, consider
migrating to Datastore.

Storage

Chapter 7 - Libraries 135

https://developers.google.com/protocol-buffers?hl=es-419
https://developers.google.com/protocol-buffers?hl=es-419
https://developer.android.com/reference/kotlin/android/content/SharedPreferences?hl=es-419
https://developer.android.com/reference/kotlin/android/content/SharedPreferences?hl=es-419
https://developer.android.com/reference/kotlin/android/content/SharedPreferences?hl=es-419

import androidx.datastore.core.DataStore
import
androidx.datastore.preferences.core.PreferenceDataStoreFactory
import androidx.datastore.preferences.core.Preferences
import kotlinx.atomicfu.locks.SynchronizedObject
import kotlinx.atomicfu.locks.synchronized
import okio.Path.Companion.toPath

private lateinit var dataStore: DataStore<Preferences>

private val lock = SynchronizedObject()

fun getDataStore(producePath: () -> String): DataStore<Preferences>
=

synchronized(lock) {

if (::dataStore.isInitialized) {
dataStore

} else {
PreferenceDataStoreFactory.createWithPath(produceFile =

{ producePath().toPath() })

.also { dataStore = it }
}

}

internal const val dataStoreFileName = "counter.preferences_pb"

For a complete example of using DataStore in KMP, you can
check out the following link:

GitHub - santimattius/kmp-shared-preferences at
feature/data-store:Example using Multiplaform
Settings.

Chapter 7 - Libraries 136

https://github.com/santimattius/kmp-shared-preferences/tree/feature/data-store
https://github.com/santimattius/kmp-shared-preferences/tree/feature/data-store
https://github.com/santimattius/kmp-shared-preferences/tree/feature/data-store
https://github.com/santimattius/kmp-shared-preferences/tree/feature/data-store

Multiplatform Settings
This is a Kotlin library for Multiplatform apps that enables
common code to persist key-value data.

 private val _counter = IntSettingConfig(settings,
"counter", 0)
 val counter: Flow<Int> = _counter.value

fun increment() {
val value = _counter.get().toInt() + 1
_counter.set("$value")

}

}

fun decrease() {
val value = _counter.get().toInt() - 1
if (value < 0) {

_counter.set("0")
} else {

_counter.set("$value")
}

}

import com.russhwolf.settings.Settings
import
com.santimattius.kmp.skeleton.core.preferences.IntSettingConf
ig
import kotlinx.coroutines.flow.Flow

//commonMain
expect fun provideSettings(): Settings

class SettingsRepository(

) {

settings: Settings = provideSettings(),

Chapter 7 - Libraries 137

Initialization in Android/iOS

For a complete example, you can check out the following Github
repository:

GitHub - santimattius/kmp-shared-preferences:
Example using Multiplaform Settings

GitHub - russhwolf/multiplatform-settings: A Kotlin
Multiplatform library for saving simple key-value data

https://github.com/russhwolf/multiplatform-settings

https://github.com/santimattius/kmp-shared-preferences

//androidMain
import androidx.preference.PreferenceManager
import android.content.SharedPreferences
import com.russhwolf.settings.Settings
import com.russhwolf.settings.SharedPreferencesSettings

actual fun provideSettings(context:Context): Settings {
 val preferences =
PreferenceManager.getDefaultSharedPreferences(context)

}

return SharedPreferencesSettings(sharedPref)

//iosMain
import com.russhwolf.settings.NSUserDefaultsSettings
import com.russhwolf.settings.Settings
import platform.Foundation.NSUserDefaults

actual fun provideSettings(): Settings{
 return
NSUserDefaultsSettings(NSUserDefaults.standardUserDefaults)
}

As we can see, Multiplatform Settings uses the preferences
implementations of each platform.
For more detailed information and documentation about
Multiplatform Settings, you can check the official documentation
on GitHub.

Chapter 7 - Libraries 138

https://github.com/santimattius/kmp-shared-preferences/tree/main
https://github.com/santimattius/kmp-shared-preferences/tree/main
https://github.com/russhwolf/multiplatform-settings/tree/main
https://github.com/russhwolf/multiplatform-settings/tree/main
https://github.com/russhwolf/multiplatform-settings/tree/main

A tiny Kotlin multiplatform library that assists in saving and
restoring objects to and from disk using kotlinx.coroutines,
kotlinx.serialisation and okio. Inspired by RxStore.

Features

KStore

GitHub - xxfast/KStore: A tiny Kotlin multiplatform library that assists in
saving and restoring objects to and from disk using kotlinx.coroutine
https://github.com/xxfast/KStore

🔒 Read-write locks; with a mutex FIFO lock
💾 In-memory caching; read once from disk and reuse
📬 Default values; no file? no problem!
🚚 Migration support; moving shop? take your data with
you
🚉 Multiplatform!

Chapter 7 - Libraries 139

https://github.com/Gridstone/RxStore
https://github.com/Gridstone/RxStore
https://github.com/xxfast/KStore
https://github.com/xxfast/KStore
https://github.com/xxfast/KStore

The SQLDelight plugin generates the necessary classes to interact
with the database. In this example, AppDatabase and
databaseQueries are generated by SQLDelight.

SQLDelight generates typesafe Kotlin APIs from your SQL
statements. It verifies your schema, statements, and migrations at
compile-time and provides IDE features like autocomplete and
refactoring which make writing and maintaining SQL simple.

SQLDelight

Database

CREATE TABLE Favorite (

);

resourceId INTEGER PRIMARY KEY NOT NULL,
title TEXT NOT NULL, overview TEXT NOT
NULL, imageUrl TEXT NOT NULL, type TEXT
NOT NULL

selectAllFavorite:
SELECT * FROM Favorite;

Chapter 7 - Libraries 140

Room is Android's official database library, and now it can also
be used in Kotlin Multiplatform projects. From now on, the
same database you create for the Android target will be
available across all targets.

For more information about SQLDelight and how to use it in
your projects, you can check the official SQLDelight
documentation https://cashapp.github.io/sqldelight/2.0.1/.

You can also find practical examples in the accompanying
example.

class SQLDelightFavoriteLocalDataSource(

db: AppDatabase,
private val dispatcher: CoroutineDispatcher =

Dispatchers.IO,
) : FavoriteLocalDataSource {

 private val databaseQueries = db.appDatabaseQueries

override val all: Flow<List<Favorite>>
get() = databaseQueries

.selectAllFavorite()

.asFlow()

.mapToList(dispatcher)

}

Room

Chapter 7 - Libraries 141

https://cashapp.github.io/sqldelight/2.0.1/
https://cashapp.github.io/sqldelight/2.0.1/
https://cashapp.github.io/sqldelight/2.0.1/
https://cashapp.github.io/sqldelight/2.0.1/

For more detailed information about Room in Kotlin
Multiplatform, you can check the official documentation at the
following link

// shared/src/commonMain/kotlin/Database.kt

@Database(entities = [TodoEntity::class], version = 1)
@ConstructedBy(AppDatabaseConstructor::class) abstract
class AppDatabase : RoomDatabase() {

}

abstract fun getDao(): TodoDao

// The Room compiler generates the `actual` implementations.
@Suppress("NO_ACTUAL_FOR_EXPECT")
expect object AppDatabaseConstructor :
RoomDatabaseConstructor<AppDatabase> {

}

override fun initialize(): AppDatabase

@Dao
interface TodoDao {

@Insert
suspend fun insert(item: TodoEntity)

@Query("SELECT count(*) FROM TodoEntity")
suspend fun count(): Int

}

@Query("SELECT * FROM TodoEntity")
fun getAllAsFlow(): Flow<List<TodoEntity>>

@Entity
data class TodoEntity(

)

@PrimaryKey(autoGenerate = true) val id: Long = 0,
val title: String,
val content: String

The Room persistence library provides an abstraction layer over SQLite to allow for
more robust database access while harnessing the full power of SQLite.

Room (Kotlin Multiplatform) | Android Developers

https://developer.android.com/kotlin/multiplatform/room

Chapter 7 - Libraries 142

https://developer.android.com/kotlin/multiplatform/room
https://developer.android.com/kotlin/multiplatform/room
https://developer.android.com/kotlin/multiplatform/room
https://developer.android.com/kotlin/multiplatform/room

The following Jetpack libraries are compatible with KMP:
Annotations

https://developer.android.com/jetpack/androidx/
releases/annotation

Collection
https://developer.android.com/jetpack/androidx/
releases/collection

DataStore
https://developer.android.com/jetpack/androidx/
releases/datastore

Lifecycle
https://developer.android.com/jetpack/androidx/
releases/lifecycle

Paging
https://developer.android.com/jetpack/androidx/
releases/paging

Room
https://developer.android.com/jetpack/androidx/
releases/room

SQLite
https://developer.android.com/jetpack/androidx/
releases/sqlite

Google officially supports Kotlin Multiplatform for sharing
business logic between iOS and Android. Many Jetpack libraries
have already been adapted to take advantage of KMP.

Multiplatform Jetpack Libraries

Chapter 7 - Libraries 143

https://android-developers.googleblog.com/2024/05/android-support-for-kotlin-multiplatform-to-share-business-logic-across-mobile-web-server-desktop.html

These are some of the libraries that help us address the challenge
of delegating platform-specific implementations. They allow our
code to be fully multiplatform, giving us the flexibility to choose
which business logic to share while keeping critical aspects like
the user interface separate. If you want to discover other
libraries with Kotlin Multiplatform support, you can visit the
following Github repository or the Jetbrains website where you
can find official and community libraries.

Klibs.io: https://klibs.io/
Awesome Kotlin Multiplatform: https://github.com/
terrakok/kmp-awesome

Summary

Android Support for Kotlin Multiplatform to Share
Business Logic Across Mobile, Web, Server, and
Desktop
https://android-developers.googleblog.com/2024/05/android-
support-for-kotlin-multiplatform-to-share-business-logic-across-
mobile-web-server-desktop.html

Chapter 7 - Libraries 144

https://android-developers.googleblog.com/2024/05/android-support-for-kotlin-multiplatform-to-share-business-logic-across-mobile-web-server-desktop.html
https://android-developers.googleblog.com/2024/05/android-support-for-kotlin-multiplatform-to-share-business-logic-across-mobile-web-server-desktop.html
https://android-developers.googleblog.com/2024/05/android-support-for-kotlin-multiplatform-to-share-business-logic-across-mobile-web-server-desktop.html
https://android-developers.googleblog.com/2024/05/android-support-for-kotlin-multiplatform-to-share-business-logic-across-mobile-web-server-desktop.html
https://android-developers.googleblog.com/2024/05/android-support-for-kotlin-multiplatform-to-share-business-logic-across-mobile-web-server-desktop.html

Chapter 8: Essential Tools and
Plugins for Kotlin
Multiplatform Development

145

Chapter 8: Essential Tools and Plugins for
Kotlin Multiplatform Development

KDoctor runs the following diagnostics:

System - checks an operating system version
JDK: checks that JDK installation and JAVA_HOME
setting
Android Studio - checks Android Studio installation, Kotlin
and Kotlin Multiplatform Mobile plugins
Xcode - checks Xcode installation and setup
CocoaPods - checks ruby environment and cocoapods gem
installation

KDoctor ensures that all required components are properly
installed and ready for use. If something is missed or not
configured, KDoctor highlights the problem and suggests how to
fix the problem.

This chapter provides a concise overview of tools and plugins
that enhance Kotlin Multiplatform application development.
We'll explore essential tools like SKIE, KMMBridge, Xcode
Kotlin, KMM Plugin, Dokka, and DeteKt. Each section
examines their key features, development tool integrations,
and how they improve the developer experience. This guide
helps developers understand and navigate the Kotlin
Multiplatform tooling ecosystem.

Chapter 8 - Essential Tools and Plugins for KMP Development

KDoctor

146

https://kotlinlang.org/docs/kmm-setup.html

Extra diagnostics:

Synthetic generated project - downloads and builds project
from https://github.com/Kotlin/kdoctor.
Local Gradle Project - checks a user's project in the current
directory

GitHub - Kotlin/kdoctor: Environment analysis
tool Environment analysis tool. Contribute to
Kotlin/kdoctor development by creating an
account on GitHub.

https://github.com/Kotlin/kdoctor

Chapter 8 - Essential Tools and Plugins for KMP Development 147

https://github.com/Kotlin/kdoctor/tree/template
https://github.com/Kotlin/kdoctor/tree/template

SKIE

One of the main disadvantages of Kotlin Multiplatform is the
lack of direct interaction with Swift. Without this, Swift can
only communicate with Kotlin indirectly, through Objective-
C. This approach, although functional, has many limitations
and causes Kotlin to lose support for many of its language
features. SKIE is a specialized plugin of the Kotlin native
compiler that recovers support for some of these features by
modifying the Xcode framework produced by the Kotlin
compiler. Thanks to this, it is not necessary to change the
way you distribute and consume your Kotlin Multiplatform
frameworks. Developed by TouchLab, SKIE is designed to
facilitate the development of projects with Kotlin
Multiplatform, focusing on improving interoperability and
the safe export of interfaces between different platforms.
Below, its features oriented to Kotlin Multiplatform are
described.

Chapter 8 - Essential Tools and Plugins for KMP Development 148

Safe Interface Exportation: Verifies type compatibility
between platforms and ensures multi-platform
interoperability.
Export Process Automation: Automatically generates the
necessary code and simplifies configuration with a Gradle
DSL.
Multi-platform Compatibility: Compatible with all Kotlin
Multiplatform targets and integrates well with existing
tools.
Support and Extensibility: Provides comprehensive
documentation and allows extensions to adapt to project
needs.
Active Maintenance: TouchLab regularly updates SKIE and
has the backing of an active community.

SKIE Features

Chapter 8 - Essential Tools and Plugins for KMP Development 149

SKIE is a powerful and essential tool for Kotlin Multiplatform
developers. It allows them to safely and efficiently export
interfaces between different platforms. With features that
automate the export process and ensure type compatibility, SKIE
significantly improves the development experience. In addition, it
facilitates the creation of robust and easy-to-maintain multi-
platform applications.

Next, we see an example of the use of Sealed Classes in Swift:

sealed class Status {
 object Loading : Status()
 data class Error(val message: String) : Status()
 data class Success(val result: SomeData) : Status()
}

Swift without SKIE:

func updateStatus(status: Status) {
 switch status {
 case _ as Status.Loading:
 showLoading()
 case let error as Status.Error:
 showError(message: error.message)
 case let success as Status.Success:
 showResult(data: success.result)
 default:
 fatalError("Unknown status")
 }
}

Swift with SKIE

func updateStatus(status: Status) {
 switch status {
 case _ as Status.Loading:
 showLoading()
 case let error as Status.Error:
 showError(message: error.message)
 case let success as Status.Success:
 showResult(data: success.result)
 default:
 fatalError("Unknown status")
 }
}

Chapter 8 - Essential Tools and Plugins for KMP Development 150

To see more features of SKIE, I leave its documentation below.

SKIE Intro | SKIE Welcome to the SKIE
documentation. Let's give your iOS developer
experience a boost, shall we?

https://skie.touchlab.co/intro

Chapter 8 - Essential Tools and Plugins for KMP Development 151

KMMBridge is a Gradle tool that simplifies the publication of
Kotlin Multiplatform framework binaries for Xcode. It allows
publication on different backends and its use through
CocoaPods or Swift Package Manager.

Creates and publishes XCFramework zip files of your Kotlin
modules
Publishes on various online storage platforms
Configures and publishes versions for SPM and CocoaPods
for other developers

It offers a local development flow for SPM in addition to its
publication functionality.
It is aimed at those who need to publish Xcode frameworks from
Kotlin for iOS developers, useful for teams testing KMP,
needing modularization, or publishing SDKs.

KMMBridge

https://skie.touchlab.co/intro
https://skie.touchlab.co/intro
https://skie.touchlab.co/intro
https://skie.touchlab.co/intro
https://skie.touchlab.co/intro

The xcode-kotlin plugin allows you to debug Kotlin code
running in an iOS application, directly from Xcode. This
provides a smoother development and integration experience for
iOS developers using Kotlin shared code. In addition, it allows a
more accessible experience for large teams, where not all
members can directly edit the shared code.

KMMBridge Intro | KMMBridge
KMMBridge is a set of Gradle tooling that facilitates publishing and
consuming pre-built Kotlin Multiplatform Xcode Framework
binaries.

https://kmmbridge.touchlab.co/docs/

Xcode Kotlin

Chapter 8 - Essential Tools and Plugins for KMP Development 152

https://kmmbridge.touchlab.co/docs/
https://kmmbridge.touchlab.co/docs/
https://kmmbridge.touchlab.co/docs/
https://kmmbridge.touchlab.co/docs/
https://kmmbridge.touchlab.co/docs/

Integration with Xcode
Direct support for Xcode: It enables the inclusion of
Kotlin code in Xcode projects, improving interoperability
with Swift and Objective-C.
Compatibility with Xcode tools: Ensures that Xcode tools,
such as the debugger and compiler, work correctly with
Kotlin.

TouchLab's Xcode Kotlin integrates Kotlin into Xcode
projects for iOS development, enhancing the experience of
developers using Kotlin Multiplatform. It allows native
integration of Kotlin code into Swift and Objective-C projects.
Its main features are:

Features

Ease of configuration
Simplified configuration: It offers predefined scripts and
configurations to integrate Kotlin into Xcode, minimizing
complexity and potential errors.
Detailed documentation: Provides comprehensive guides for
setting up and using Kotlin in iOS projects.

Automatic generation of bindings
Automatic bindings: Automatically creates the necessary
bindings to access Kotlin code from Swift and Objective-C,
avoiding the manual writing of bridge code.

Chapter 8 - Essential Tools and Plugins for KMP Development 153

Improvement of the developer experience
Simplified workflow: By automating the integration of
Kotlin into Xcode.

Xcode Kotlin: Xcode support for Kotlin browsing and debugging
The xcode-kotlin plugin allows debugging of Kotlin code running in an iOS
application, directly from Xcode.

https://touchlab.co/xcodekotlin

Chapter 8 - Essential Tools and Plugins for KMP Development 154

https://touchlab.co/xcodekotlin
https://touchlab.co/xcodekotlin
https://touchlab.co/xcodekotlin
https://touchlab.co/xcodekotlin

Integration with Android Studio
Integrates with Android Studio providing tools for cross-
platform development.
Facilitates the creation of KMP projects with automatic
wizards.

Advanced Development Tools
Offers autocomplete and refactoring tools.
Provides advanced navigation and code search.

Debugging and Testing

Supports Kotlin code debugging on Android and iOS.
Facilitates unit and integration testing for shared code.

Developer Experience
Automates repetitive tasks of cross-platform development.
Provides clear and detailed error messages.

The KMM Plugin is an essential tool for developers using
Kotlin Multiplatform in Android Studio. This plugin offers
complete integration with Android Studio, thus making the
creation, compilation, and debugging of KMP projects easier.
With the KMM Plugin, developers can easily create Kotlin
Multiplatform projects and access all the features of Kotlin
Multiplatform directly from Android Studio. This includes the
ability to define shared modules, manage dependencies, and
perform unit tests on shared code, all within the familiar
Android Studio development environment.

Plugin Features

KMM Plugin

Chapter 8 - Essential Tools and Plugins for KMP Development 155

Helps to set up the structure and dependencies of new Kotlin
Multiplatform projects.
Allows selecting the platforms (JVM, JS, Android, iOS, etc.)
for the project.
Kotlin Multiplatform Wizard generates the base code,
including configuration and sample code, saving time.

Kotlin Multiplatform Wizard is a tool from JetBrains designed
to simplify the creation of new Kotlin Multiplatform projects.
It has an intuitive user interface that guides developers through
the initial project setup.
Features

The KMM Plugin from JetBrains is an essential tool for Kotlin
Multiplatform developers seeking seamless integration between
Android and iOS. With features that simplify project setup and
significantly improve developer experience, this plugin allows
creating cross-platform applications, taking full advantage of
Android Studio and Kotlin capabilities.

Kotlin Multiplatform Mobile: IntelliJ IDEs Plugin
| Marketplace
The Kotlin Multiplatform Mobile plugin helps you
develop applications that work on both Android
and iOS. With the Kotlin Multiplatform Mobile
plugin for Android...

https://plugins.jetbrains.com/plugin/14936-kotlin-multiplatform-mobile

Kotlin Multiplatform Wizard

Chapter 8 - Essential Tools and Plugins for KMP Development 156

https://plugins.jetbrains.com/plugin/14936-kotlin-multiplatform-mobile
https://plugins.jetbrains.com/plugin/14936-kotlin-multiplatform-mobile
https://plugins.jetbrains.com/plugin/14936-kotlin-multiplatform-mobile
https://plugins.jetbrains.com/plugin/14936-kotlin-multiplatform-mobile
https://plugins.jetbrains.com/plugin/14936-kotlin-multiplatform-mobile
https://plugins.jetbrains.com/plugin/14936-kotlin-multiplatform-mobile
https://plugins.jetbrains.com/plugin/14936-kotlin-multiplatform-mobile

In addition, on the website you will find a gallery of other
templates with different configurations. For example, you will
find one based on Amper that we will see later.

Kotlin Multiplatform Wizard is an excellent tool for any developer
looking for a quick and easy way to start with Kotlin
Multiplatform. With its focus on ease of use and customization, it
facilitates the creation of new projects, allowing developers to
focus on what really matters: writing high-quality code.

Kotlin Multiplatform Wizard | JetBrains
Create your first multiplatform project using the Kotlin Multiplatform
wizard for Android, iOS, and Desktop, or use one of the pre-made
templates.

https://kmp.jetbrains.com/

Chapter 8 - Essential Tools and Plugins for KMP Development 157

https://kmp.jetbrains.com/
https://kmp.jetbrains.com/
https://kmp.jetbrains.com/
https://kmp.jetbrains.com/
https://kmp.jetbrains.com/

Documentation is essential in any software development project.
Dokka is a documentation generation tool specifically designed
for Kotlin projects, including Kotlin Multiplatform. Dokka
analyzes the source code and generates clear and concise
documentation in HTML, Markdown, or Javadoc formats. This
documentation describes the public API of a Kotlin
Multiplatform project, making it easier for developers to
understand how to use the different parts of the shared code. In
addition, it promotes good development practices by making the
documentation easily accessible for the entire team.

Dokka: Generating Clear and Concise
Documentation

Chapter 8 - Essential Tools and Plugins for KMP Development 158

Dokka Features
Automatic Documentation Generation

Automatically generates documentation from KDoc
comments in Kotlin source code.
Supports Kotlin Multiplatform projects, including modules
for JVM, JS and Native.

Flexible Configuration
Integrates with Gradle, allowing documentation generation
to be configured from build.gradle.
Offers advanced configurations to customize the format and
content of the documentation.

Output in Multiple Formats
Generates documentation in several formats, including
HTML and Markdown.
Can generate documentation in a format similar to Javadoc.

Integration with Build Tools
Compatible with integration and continuous delivery (CI/
CD) systems.
Integrates with IntelliJ IDEA and other JetBrains-based
IDEs.

Documentation Enrichment
Allows the inclusion of images, links and other external
resources in the documentation.
Can include code examples and snippets in the
documentation.

Chapter 8 - Essential Tools and Plugins for KMP Development 159

Optimization of the Developer Experience
Generates documentation with a clear and easy-to-navigate
structure.
Supports the inclusion of annotations and comments in the
documentation.

Dokka, essential for Kotlin developers, supports clear and up-to-
date documentation of projects, including Kotlin Multiplatform.
It facilitates the generation of documentation, supports various
formats and integrates with build tools and CI/CD, improving
the quality and accessibility of code documentation. This benefits
the understanding and maintenance of projects, for individual
developers and teams.

Get started with Dokka | Kotlin
Below you can find simple instructions to help
you get started with Dokka.

https://kotlinlang.org/docs/dokka-get-started.html

Chapter 8 - Essential Tools and Plugins for KMP Development 160

https://kotlinlang.org/docs/dokka-get-started.html
https://kotlinlang.org/docs/dokka-get-started.html
https://kotlinlang.org/docs/dokka-get-started.html
https://kotlinlang.org/docs/dokka-get-started.html

DeteKt Features
Static Code Analysis

Code Problem Detection: Analyzes source code to identify
common issues such as style errors, potential failures, and
complexity problems. This helps improve code quality. Code
Quality Report: Generates detailed reports highlighting areas
of the code that require attention, thus facilitating the
identification and correction of problems.

Support for Kotlin Multiplatform
Multiple Target Analysis: It is compatible with Kotlin
Multiplatform projects and allows analysis of shared and
platform-specific code (JVM, JS, Native).
Code Consistency: Ensures that code quality rules are
consistently applied across different platforms, maintaining a
uniform standard.

Code quality is essential for the maintainability and scalability of
any software project. DeteKt is a static code analysis tool
designed to identify and correct common quality problems in
Kotlin projects. With DeteKt, developers can automatically
analyze their Kotlin Multiplatform code for errors,
redundancies, incorrect naming conventions, and other potential
problems. This helps ensure that shared code is clean, consistent,
and easy to maintain over time.

DeteKt: Code Quality Improvement

Chapter 8 - Essential Tools and Plugins for KMP Development 161

Flexible and Customizable Configuration
Gradle Plugin: Easily integrates with Gradle, allowing code
analysis to be configured and run as part of the build process.
Customizable Rules: Provides a wide range of predefined
rules and allows developers to define custom rules to suit the
specific standards of their project.

Integration with Development Tools
CI/CD Integration: It is compatible with continuous
integration and delivery (CI/CD) systems, which facilitates
the incorporation of static analysis into the development
pipeline.
IDE Compatibility: Works well with IntelliJ IDEA and
Android Studio, allowing developers to view and correct code
quality problems directly in their development environment.

Detailed and Actionable Reports
Various Report Formats: Generates reports in various
formats, such as HTML, XML, and plain text, which
facilitates their integration with other tools and systems.
Link to Source Code: Provides direct links to the lines of
code that have problems, making it easier to review and
correct them.

Continuous Code Improvement

Best Practice Rules: Includes rules based on Kotlin
development best practices, helping developers write cleaner
and more maintainable code.
Code Smell Detection: Identifies code smells like long classes,
complex methods, and code duplication, promoting healthier
software design.

Chapter 8 - Essential Tools and Plugins for KMP Development 162

Extensibility

Plugins and Extensions: Allows the creation of plugins and
extensions to add additional functionality or adapt DeteKt to
the specific needs of the project.
Exception Configuration: Offers options for configuring
exceptions and exclusions, allowing the analysis to be tailored
to the specific contexts of the project.

DeteKt is a powerful and essential tool for Kotlin developers
looking to maintain high-quality, clean, and error-free code.
With features that facilitate the static analysis of Kotlin
Multiplatform projects, ensure code consistency, and allow
smooth integration with development tools and CI/CD, DeteKt
significantly improves code quality and team productivity. This
tool allows developers to proactively detect and correct
problems, promoting best practices and healthier software
design.

Hello from detekt | detekt
The official website of detekt: A static analyzer for Kotlin

https://detekt.dev/

Chapter 8 - Essential Tools and Plugins for KMP Development 163

https://detekt.dev/
https://detekt.dev/
https://detekt.dev/

Process Optimization
Build Efficiency: Optimizes the construction process by
reducing compilation times and improving the overall
workflow efficiency.
Incremental Compilation: Supports incremental
compilation, where only recent changes in the source code
are recompiled, speeding up the build process.

Amper is a build system developed by JetBrains, specifically
designed for the Kotlin ecosystem, including Kotlin
Multiplatform projects. Below, its main features focused on
Kotlin Multiplatform are described.

Amper

Amper Features

Chapter 8 - Essential Tools and Plugins for KMP Development 164

Support for Kotlin Multiplatform
Multiplatform Compatibility: It is designed to handle Kotlin
Multiplatform projects, allowing the construction of
common and platform-specific modules (JVM, JS, Native)
efficiently.
Simplified Configuration: Provides simplified configuration
for multiplatform projects, making it easier to manage and
maintain build configurations.

Dependency Management
Efficient Dependency Handling: Provides an advanced
system for dependency management, ensuring that all
necessary libraries and frameworks are correctly integrated
and updated.
Conflict Resolution: Automatically handles dependency
conflicts, facilitating the integration of multiple libraries
and components into a project.

Task Automation
Customizable Build Tasks Allows the creation and
configuration of customizable build tasks, adapting to the
specific requirements of each project.
Support for Common Tasks Includes support for common
tasks such as compilation, packaging, test execution, and
documentation generation, facilitating the development
workflow.

Chapter 8 - Essential Tools and Plugins for KMP Development 165

Amper is an advanced and efficient build system developed by
JetBrains, ideal for Kotlin projects, including Kotlin
Multiplatform. Its features optimize the construction process,
facilitate dependency management, and provide seamless
integration with JetBrains tools and ecosystems. In this way,
Amper significantly improves the efficiency and productivity
of the development workflow. This tool allows developers to
manage complex projects more effectively, ensuring fast,
reliable, and well-integrated builds in the development
environment.

In summary, this chapter provides a comprehensive overview of
the various tools and technologies available for efficient
application development using Kotlin Multiplatform. From
SKIE and KMMBridge to facilitate integration with Xcode, to
Dokka and DeteKt for enhancing code quality and
documentation. The importance of analysis tools and code
coverage tools like DeteKt and IDEs and build systems like
Fleet and Amper are also highlighted. Each tool has a specific
purpose, but all work together to provide a smooth and efficient
development experience on Kotlin Multiplatform. Through this
article, developers can gain a deeper understanding of these
tools and how they can enhance their application development
process.

GitHub: JetBrains/amper: Amper - a project configuration and build tool
with a focus on the user experience and the IDE support Amper - a
project configuration and build tool with a focus on the user experience
and the IDE support: JetBrains/amper

https://github.com/JetBrains/amper

Summary

Chapter 8 - Essential Tools and Plugins for KMP Development 166

https://github.com/JetBrains/amper
https://github.com/JetBrains/amper
https://github.com/JetBrains/amper
https://github.com/JetBrains/amper
https://github.com/JetBrains/amper
https://github.com/JetBrains/amper

Hello Kotlin Multiplatform!

References
This section compiles all bibliographic references used as sources
for the development of the content of this book on Kotlin
Multiplatform. The references are organized by chapters to
facilitate consultation and follow-up, providing the necessary
information to access the original cited materials. Each reference
includes the author or organization, the title of the resource, the
platform or website where it is available, and the corresponding
link to directly access the content. These sources have been
carefully selected to ensure updated, accurate, and relevant
information about multiplatform development with Kotlin.
Readers can use these references to delve deeper into specific
topics, verify information, or explore additional concepts that
complement the content presented in each chapter.

References 167

Chapter 1: Introduction to Kotlin Multiplatform
Jetbrains. “Compose Multiplatform, Develop stunning shared
UIs for Android, iOS, desktop, and web”. JetBrains.com.
https://www.jetbrains.com/lp/compose-multiplatform/
Jetbrains. “Choosing a configuration for your Kotlin
Multiplatform project”. JetBrains.com. https://
www.jetbrains.com/help/kotlin-multiplatform-dev/
multiplatform-project-configuration.html
Jetbrains. ”Kotlin Multiplatform, Simplify the development of
cross-platform projects and reduce the time spent writing and
maintaining the same code for different platforms”.
Kotlinlang.org. https://kotlinlang.org/docs/
multiplatform.html
Jetbrains. ”Create a multiplatform app using Ktor and
SQLDelight”. JetBrains.com. https://www.jetbrains.com/
help/kotlin-multiplatform-dev/multiplatform-ktor-
sqldelight.html
Jetbrains. “Kotlin Multiplatform, Share code on your terms”.
JetBrains.com. https://www.jetbrains.com/kotlin-
multiplatform/

References 168

Chapter 2: Understanding the Basic Project
Structure

Jetbrains. “CocoaPods overview and setup ”. Kotlinlang.org.
https://kotlinlang.org/docs/native-cocoapods.html
JetBrains. "Kotlin Gradle Plugin". Kotlinlang.org. https://
kotlinlang.org/docs/gradle.html.
JetBrains. "Getting Started with Kotlin Multiplatform".
Kotlinlang.org. https://kotlinlang.org/docs/multiplatform-get-
started.html.
JetBrains. "Discover Kotlin Multiplatform Project".
Kotlinlang.org. https://kotlinlang.org/docs/multiplatform-
discover-project.html.
JetBrains. "Advanced Project Structure in Kotlin
Multiplatform". Kotlinlang.org. https://kotlinlang.org/docs/
multiplatform-advanced-project-structure.html.
JetBrains. "Sharing Code Across Platforms". Kotlinlang.org.
https://kotlinlang.org/docs/multiplatform-share-on-
platforms.html.
JetBrains. "Expect and Actual Declarations". Kotlinlang.org.
https://kotlinlang.org/docs/multiplatform-expect-actual.html.
JetBrains. "Kotlin Multiplatform Hierarchy". Kotlinlang.org.
https://kotlinlang.org/docs/multiplatform-hierarchy.html.
JetBrains. "Default Hierarchy Template". Kotlinlang.org.
https://kotlinlang.org/docs/multiplatform-
hierarchy.html#default-hierarchy-template.
JetBrains. "Manual Configuration of Kotlin Multiplatform
Hierarchy". Kotlinlang.org. https://kotlinlang.org/docs/
multiplatform-hierarchy.html#manual-configuration.

References 169

Chapter 4: Modularization

Chapter 3: Dependency Injection
Kotlin. "Kotlin Multiplatform update". Twitter. https://
twitter.com/kotlin/status/1710269674016125100.
Kosi-Libs. "Getting Started with Kodein 7.22". Kosi-
Libs.org. https://kosi-libs.org/kodein/7.22/getting-
started.html.
Insert Koin. "Koin: Pragmatic Kotlin Dependency Injection".
Insert-Koin.io. https://insert-koin.io/.
P-Y. "DIY: Your Own Dependency Injection Library". P-Y
Blog. https://blog.p-y.wtf/diy-your-own-dependency-
injection-library.
Evan Tatarka. "Kotlin Inject". GitHub. https://github.com/
evant/kotlin-inject.

JetBrains. "Multiplatform Project Configuration: Module
Configurations". JetBrains Help. https://www.jetbrains.com/
help/kotlin-multiplatform-dev/multiplatform-project-
configuration.html#module-configurations.
Touchlab. "Optimizing Gradle Builds in Multi-Module
Projects". Touchlab. https://touchlab.co/optimizing-gradle-
builds-in-Multi-module-projects.
Touchlab. "Multiple Kotlin Frameworks in an Application".
Touchlab. https://touchlab.co/multiple-kotlin-frameworks-in-
application.
Google. "Modularization Patterns". Android Developers.
https://developer.android.com/topic/modularization/patterns.

References 170

Chapter 5: Testing
Fowler, Martin. "The Practical Test Pyramid".
MartinFowler.com. https://martinfowler.com/articles/
practical-test-pyramid.html.
Fowler, Martin. "Integration Test". MartinFowler.com.
https://martinfowler.com/bliki/IntegrationTest.html.
Fowler, Martin. "Object Mother". MartinFowler.com.
https://martinfowler.com/bliki/ObjectMother.html.
Refactoring Guru. "Builder Design Pattern".
Refactoring.Guru. https://refactoring.guru/design-patterns/
builder.
Fowler, Martin. "Test Double". MartinFowler.com. https://
martinfowler.com/bliki/TestDouble.html.
Google. "Fundamentals of Testing". Android Developers.
https://developer.android.com/training/testing/fundamentals.
Kotlin. "Kotlinx-Kover". GitHub. https://github.com/Kotlin/
kotlinx-kover.

References 171

Chapter 6: Using Native Libraries in Kotlin Multiplatform
JetBrains. "Managing iOS Dependencies in Kotlin
Multiplatform: With CocoaPods". Kotlinlang.org. https://
kotlinlang.org/docs/multiplatform-ios-
dependencies.html#with-cocoapods.
JetBrains. "Managing iOS Dependencies in Kotlin
Multiplatform: Without CocoaPods". Kotlinlang.org. https://
kotlinlang.org/docs/multiplatform-ios-
dependencies.html#without-cocoapods.
JetBrains. "Expect and Actual Declarations". Kotlinlang.org.
https://kotlinlang.org/docs/multiplatform-expect-actual.html.
JetBrains. "Type Aliases in Kotlin". Kotlinlang.org. https://
kotlinlang.org/docs/type-aliases.html.

References 172

The following repositories provide practical example code that
complements the theoretical content presented in this book.
Each repository is designed to illustrate specific concepts of
Kotlin Multiplatform development and serve as a reference for
implementing patterns and techniques discussed in the
different chapters. These examples range from the basic
structure of a KMP project to more advanced
implementations such as modularization, integration with
native APIs, and preference management. Readers can clone,
explore, and modify these repositories to directly experiment
with the code as they progress in their le ar ning. It is
recommended to review these examples in parallel with
reading the corresponding chapters to gain a deeper and more
practical understanding of the presented concepts.

Practical Example Repositories for the
Book

References 173

KMP for Mobile Native Developers
https://github.com/santimattius/kmp-for-mobile-native-
developers

KMP Multi Module Example
https://github.com/santimattius/kmp-multi-module-
example

KMP Preferences Example
https://github.com/santimattius/kmp-preferences-
example

KMP Native API Playground
https://github.com/santimattius/kmp-native-api-
playground

KMP Networking
https://github.com/santimattius/kmp-networking

References 174

